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THE NUMBER OF MAXIMAL TORSION COSETS IN

SUBVARIETIES OF TORI

CÉSAR MARTÍNEZ

Abstract. We present sharp bounds on the number of maximal torsion cosets in a
subvariety of the complex algebraic torus Gn

m. Our first main result gives a bound
in terms of the degree of the defining polynomials. A second result gives a bound in
terms of the toric degree of the subvariety.

As a consequence, we prove the conjectures of Ruppert and of Aliev and Smyth
on the number of isolated torsion points of a hypersurface. These conjectures bound
this number in terms of the multidegree and the volume of the Newton polytope of a
polynomial defining the hypersurface, respectively.

1. Introduction

Let Gnm = (C×)n be the complex algebraic torus of dimension n. A torsion point
of Gnm is an n-tuple of roots of unity. Given V a subvariety of Gnm, we call Vtors the set
of torsion points contained in V and we denote by Vtors its Zariski closure.

The toric Manin-Mumford conjecture states that Vtors is a finite union of torsion
cosets, that is translates by torsion points of algebraic subtori of Gnm. This was proved
by Ihara, Serre and Tate for dim(V ) = 1 [Lan83, Theorem 6.1] and by Laurent for higher
dimensions [Lau84, Théorème 2].

In this article, we focus on finding a sharp upper bound for the number of maximal
torsion cosets in V and their degrees. It was already proved by Laurent [Lau84] that, if V
is defined over a number field K by a set of polynomials of degree at most δ and height
at most η, the number of maximal torsion cosets in V and their degree is effectively
bounded in terms of n, δ, η and [K : Q]. Later, Bombieri and Zannier [BZ95], following
the work of Zhang [Zha95], showed that both the number of maximal torsion cosets and
the degree of their defining polynomials can be bounded just in terms of n and δ.

Furthermore, Schmidt [Sch96] obtained an explicit upper bound for the number of
maximal torsion cosets in V . Combined with a result of Evertse [Eve99], he bounds the
number of maximal torsion cosets by

(11δ)n
2

(
n+ δ
δ

)3
(
n+δ
δ

)2
.

Using a different approach, Ruppert [Rup93] presented an algorithm to determine the
torsion cosets of a variety V ⊂ Gnm. Ruppert’s approach treats first the case dim(V ) = 1
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calcul formel”, and the Spanish project MINECO MTM2012-38122-C03-02.

1



THE NUMBER OF MAXIMAL TORSION COSETS IN SUBVARIETIES OF TORI 2

where, given (d1, . . . , dn) the multidegree of V ⊂ (P1)n, he is able to bound the number of
isolated torsion points in V by 22 max(di) min(di). Afterwards, he extends his algorithm
to some specific varieties in higher dimension, which leads him to formulate the following
conjecture:

Conjecture 1.1 (Ruppert). Let f ∈ C[X1, . . . , Xn] of multidegree (d1, . . . , dn). The
number of isolated torsion points on Z(f) ⊂ Gnm is bounded by cnd1 · · · dn, where cn is a
constant depending only on n.

Beukers and Smyth [BS02] reconsidered the problem for n = 2 from a similar point of
view to Ruppert’s, being able to refine the bound in terms of the Newton polytope. Given
f ∈ C[X,Y ] a polynomial, they bound the number of torsion points of Z(f) by 22vol2(∆),
where ∆ denotes the Newton polytope of f . This leads Aliev and Smyth [AS12] to
strengthen the original conjecture of Ruppert as follows:

Conjecture 1.2 (Aliev-Smyth). Let f ∈ C[X1, . . . , Xn], the number of isolated torsion
points on Z(f) ⊂ Gnm is bounded by cn voln(∆), where cn is a constant depending only
on n and ∆ is the Newton polytope of f .

For a general polynomial f ∈ C[X1, . . . , Xn] of degree δ, these conjectures imply that
the number of isolated torsion points on Z(f) is bounded by

(1) cnδ
n.

Aliev and Smyth [AS12] extended Beukers and Smyth’s algorithm to higher dimen-
sions and obtained a bound, far from the conjectured one. For f ∈ C[X1, . . . , Xn] of
degree d, they bound the number of maximal torsion cosets in V by

(2) c1(n)dc2(n),

where c1(n) = n
3
2

(2+n)5n and c2(n) = 1
16(49 · dn−2 − 4n− 9).

For sparse representation of polynomials, Leroux [Ler12] obtained an algorithm to
compute the maximal torsion cosets in V . As a consequence, he is able to bound the
number of maximal torsion cosets in V in terms of the number of nonzero coefficients
of the defining polynomials of V . For dense polynomials the bound has similar order
to (2).

A much better bound follow as a particular case of the study of points of small
height on subvarieties of tori by Amoroso and Viada [AV09, Corollary 5.4]. Let V be a
subvariety of Gnm of codimension k defined by polynomials of degree at most δ, and let

V j
tors be the j-equidimensional part of Vtors. They obtain the following bound:

deg(V j
tors) ≤

(
δ(200n5 log(n2δ))(n−k)n(n−1)

)n−j
.

Note that δ can be taken by the degree of V in the case that V is a hypersurface (as in
the statements of the conjectures). Thus, we observe that the number of isolated torsion
points of V gives (1), up to a logarithmic factor.

In this article we combine the approach of Ruppert and Aliev and Smyth with the
methods of Amoroso and Viada to prove both, Ruppert’s and Aliev and Smyth’s con-
jectures. Our first main result is the following:
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Theorem 1.3. Let V ⊂ Gnm be a variety of dimension d defined by polynomials of degree
at most δ. Then

deg(V j
tors) ≤ cnδn−j

for every j = 0, . . . , d , where cn = ((2n− 1)(n− 1)(22n + 2n+1 − 2))nd.

Applied to a general hypersurface of degree δ, this proves the bound in (1).

Let ∆ ⊂ Rn be a convex polytope with integer vertex and let W ⊂ Gnm be a variety
of dimension d. We define the toric degree as

deg∆(W ) = card(W ∩ Z),

where Z is a variety of codimension d given by d general polynomials f1, . . . , fd with
Newton poytope ∆. Using John’s theorem [Joh48, Theorem III], we are able to translate
this result to prove the conjectures. Our second main result is the following:

Theorem 1.4. Let V ⊂ Gnm be a variety of dimension d and defined by polynomials with
support in the convex polytope with integer vertex ∆. Then

deg∆(V j
tors) ≤ c̃n,j voln(∆)

for every j = 0, . . . , d , where

c̃n,j = ((2n− 1)(n− 1)(22n + 2n+1 − 2))(n−1)(n−j)2nn2nω−1
n ,

with ωn representing the volume of the n-sphere.

Note that deg∆(V 0
tors) = deg(V 0

tors) and so we obtain the following result as a particular
case to Theorem 1.4.

Corollary 1.5. Let f ∈ Q[X1, . . . , Xn] and let ∆ ⊂ Rn be a convex body such that
supp(f) ⊂ ∆. Then the number of isolated torsion points on the hypersurface Z(f) ⊂ Gnm
is bounded by

c̃n voln(∆),

where c̃n = ((2n− 1)(n− 1)(22n + 2n+1 − 2))n(n−1)2nn2nω−1
n .

Given f a polynomial of multidegree (d1, . . . , dn), we can take ∆ = [0, d1]×· · ·× [0, dn]
which proves Ruppert’s conjecture (Conjecture 1.1). Moreover, taking ∆ as the Newton
polytope of f proves Aliev and Smyth’s conjecture (Conjecture 1.2).

To discard the logarithmic error term in [AV09, Theorem 1.2], we reformulate the
main theorems of Amoroso and Viada so that they suit our particular case of torsion
subvarieties.

To do so, first we extend the argument introduced by Beukers and Smyth in [BS02]
to a more algebraic setting. In Proposition 3.2 we get, for any irreducible subvariety V
of Gnm, another variety V ′ ⊂ Gnm with the same dimension and similar degree, such that
Vtors lies in the intersection V ∩ V ′ ( V . Moreover, this V ′ can be obtained explicitly
from our initial V .

Next, in Theorem 3.4, we use the Hilbert function to consider, instead of the subva-
riety V ′, a hypersurface Z satisfying Vtors ⊂ V ∩ Z ( V . To do that we rely on both
an upper and a lower bound for the Hilbert function, the upper bound being a result
of Chardin [Cha89] and the lower bound a result of Chardin and Philippon [CP99]. By
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using this bounds, we obtain Lemma 2.8, which serves as a bridge between V ′ and Z
and is, therefore, the key element in our proof of Theorem 3.4.

Afterwards, we present two induction theorems, Theorem 4.1 and Theorem 1.3, which
are the analogues of [AV09, Theorems 2.2 and 1.2] in our case.

Finally, we use John’s theorem and Proposition 5.2 to include a transformation of any
convex body ∆ into a homothecy of the standard n-simplex of comparable n-volume.
By doing this, we are able to translate Theorem 1.3 and obtain Theorem 1.4. As a
consequence of this, we obtain Corollary 1.5, which proves both conjectures.

Acknowledgments. I thank Francesco Amoroso and Mart́ın Sombra for their advice,
corrections and patience. I also thank Éric Ricard for calling my attention to John’s
theorem.

2. Preliminaries

2.1. Homomorphisms and subgroups of algebraic tori. Let Gnm = (C×)n be the
multiplicative group or algebraic torus of dimension n. A point (x1, . . . , xn) ∈ Gnm is
alternatively denoted by x. In particular, 1 = (1, . . . , 1) represents the identity element.
Given x ∈ Gnm and λ = (λ1, . . . , λn) ∈ Zn we denote

xλ = xλ11 · · ·x
λn
n .

Moreover, given S ⊂ Gnm any subset we denote

x · S = {x · y | y ∈ S}.
If the context is clear, we write simply xS.

We call homomorphism an algebraic group homomorphism ϕ : Gn1
m → Gn2

m . There
is a bijection between integer matricesMn2×n1(Z) and homomorphisms Hom(Gn1

m ,Gn2
m )

defined as follows. Let M ∈Mn2×n1(Z) and let λ1, . . . ,λn2 ∈ Zn1 be the row vectors of
M , then

ϕM : Gn1
m −→ Gn2

m

x 7−→ (xλ1 , . . . ,xλn2 )

defines the corresponding homomorphism. In particular, for any l ∈ Z, we define the
multiplication by l as the following endomomorphism:

[l] : Gnm −→ Gnm
(x1, . . . , xn) 7−→ (xl1, . . . , x

l
n)

wich corresponds to the diagonal matrix l · Id ∈Mn×n(Z).

We denote by ζk a primitive k-th root of unity, for any k ∈ N>0, and by

µk = {ζ ∈ Gm | ζk = 1}
the subgroup of k-th roots of unity. In particular, we denote by

µ∞ =
⋃

k∈N>0

µk

the subgroup of roots of unity in Gm. Therefore,

µn∞ = {ξ ∈ Gnm | [k]ξ = 1 for some k ∈ N>0}
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is the subgroup of the torsion points of Gnm and µnk = {ξ ∈ Gnm | [k]ξ = 1} is the
subgroup of k-torsion points of Gnm. For any subvariety V ⊂ Gnm, we denote by Vtors =
V ∩ µn∞ the set of torsion points on V and by Vtors its Zariski closure in Gnm. We call
Vtors the torsion subvariety of V .

By torsion coset we understand a subvariety ωH ⊂ Gnm, where H is an irreducible
algebraic subgroup of Gnm and ω a torsion point. Let V be a subvariety of Gnm, then
we say that a torsion coset ωH is maximal in V if it is maximal by inclusion. By the
toric version of the Manin-Mumford conjecture (Laurent Theorem), Vtors is the union of
torsion cosets in V , hence we can write

Vtors =
⋃

ωH⊂V
torsion coset

ωH.

In fact, it is enough to take the maximal torsion cosets in V in the index of the union.
Let Λ be a subgroup of Zn. We denote by Λsat = (Λ ⊗Z R) ∩ Zn the saturation of

Λ and we call [Λsat : Λ] the index of Λ. In particular, we say that Λ is saturated if
[Λsat : Λ] = 1. For any subgroup Λ, we define the algebraic subgroup of Gnm associated
to Λ as follows

HΛ = {x ∈ Gnm | xλ = 1, λ ∈ Λ}.
The following result allows us to understand the relation between subgroups of Zn

and algebraic subgroups of Gnm.

Theorem 2.1. The map Λ 7→ HΛ is a bijection between subgroups of Zn and algebraic
subgroups of Gnm. A subgroup HΛ is irreducible if and only if Λ is saturated. Moreover,
for any two subgroups Λ and Λ′ we have HΛ ·HΛ′ = HΛ∩Λ′.

Proof. See [BG06, Proposition 3.2.7 and Theorem 3.2.19]. �

Corollary 2.2. Let H be a subgroup of Gnm of dimension n − r, then there exists a
surjective homomorphism

ϕ : Gnm −� Grm
such that Ker(ϕ) = H.

Proof. By Theorem 2.1, there exists a unique lattice Λ ⊂ Zn such that

H = HΛ = {x ∈ Gnm | xλ = 1, λ ∈ Λ}.
Take the saturated subgroup Λ⊥ = {x ∈ Zn | 〈x,y〉 = 0 for all y ∈ Λ}, so HΛ⊥ is
irreducible, that is HΛ⊥ ' Grm. Also by Theorem 2.1, we have that Gnm = H{0} = H ·HΛ⊥

and ϕ can be obtained as the following composition of homomorphisms:

ϕ : Gnm = H ·HΛ⊥ −� HΛ⊥
'−−→ Grm.

�

Let V be a variety in Gnm, we define the stabilizer of V as

Stab(V ) = {ξ ∈ Gnm | ξV = V }.
In particular, Stab(V ) is an algebraic subgroup of Gnm. By means of Corollary 2.2 we are
able to identify V , via a homomorphism, to a variety with trivial stabilizer. The following
result is a direct consequence of Corollary 2.2 and illustrates some useful properties of
this homomorphism.
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Corollary 2.3. Let V ⊂ Gnm be a variety. Then there exists a homomorphism ϕ : Gnm →
Grm such that r = codim(Stab(V )) and Ker(ϕ) = Stab(V ). Moreover, ϕ satisfies

(i) Stab(ϕ(V )) = {1};
(ii) ϕ−1(ϕ(V )) = V ;
(iii) ϕ−1(η)V = η0V , for every η ∈ Grm and for any η0 ∈ ϕ−1(η).

An extra remark should be made regarding the relation between the torsion cosets
and the stabilizer of V . For any torsion coset ωH in V , we have that Stab(V ) · ωH
is a union of torsion cosets in V . In particular, every maximal torsion coset in V has
dimension at least dim(Stab(V )).

2.2. Hilbert function. Let V be a variety in Gnm. We define the degree of definition
of V , δ(V ), as the minimal degree δ such that V is the intersection of hypersurfaces of
degree at most δ. We also define the degree of incomplete definition of V , δ0(V ), as the
minimal degree δ0 such that there exists an intersection X of hypersurfaces of degree
at most δ0 such that any irreducible component of V is a component of X. As a direct
consequence of the definition, for any equidimensional variety V , we have the following
inequalities

δ0(V ) ≤ δ(V ) ≤ deg(V ).

Let V be a subvariety of Gnm and let the closure of V in Pn be defined by the ho-
mogeneous radical ideal I in Q [x]. For ν ∈ N, we denote by H(V ; ν) the Hilbert
function dim(Q[x]/I)ν .

The following upper bound for the Hilbert function, is a theorem of Chardin [Cha89].

Theorem 2.4. Let V ⊆ Gnm be an equidimensional variety of dimension d = n− k and
let ν ∈ N. Then

H(V ; ν) ≤
(
ν + d
d

)
deg(V ).

On the other hand, as a consequence of a result of Chardin and Phillipon [CP99,
Corollaire 3] on Castelnuovo’s regularity, we have the following lower bound for the
Hilbert function:

Theorem 2.5. Let V ⊆ Gnm be an equidimensional variety of dimension d = n− k and
m = k(δ0(V )− 1). Then, for any integer ν > m, we have

H(V ; ν) ≥
(
ν + d−m

d

)
deg(V ).

In order to use these results in this article, we need effective upper bounds for δ0(V ′)
when V ′ is a specific type of equidimensional variety. Let us recall first an easy lemma
for δ.

Lemma 2.6. Let X1, . . . , Xt be subvarieties of Gnm. Then

δ
( t⋃
i=1

Xi

)
≤

t∑
i=1

δ(Xi).

Proof. It is enough to prove it for t = 2. Let X1 be defined by the polynomials f1, . . . , fr
with deg(fi) ≤ δ(X1) and equivalently let X2 be defined g1, . . . , gs with deg(gi) ≤ δ(X2).
Then X1 ∪X2 is defined by the polynomials figj for 1 ≤ i ≤ r and 1 ≤ j ≤ s. �
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In general, this result is not true if we use δ0 instead of δ. To have a similar lemma
for δ0, we must therefore consider more specific varieties. The following is a variation of
[AV12, Lemma 2.5.].

Lemma 2.7. Let V be an irreducible subvariety of Gnm defined over K. Let T ⊂ µn∞ ×
Gal(K/Q) be a finite family with t elements. Then

δ0

( ⋃
(g,φ)∈T

gV φ
)
≤ tδ0(V ).

Proof. We say that an irreducible variety W ⊂ Gnm is imbedded in a variety X ⊂ Gnm if
W ⊂ X but W is not an irreducible component of X.

By definition of δ0(V ), there exists a varietyX such that V is an irreducible component
of X and δ0(V ) = δ(X).

Let 〈T 〉 ⊂ µn∞ × Gal(K/Q) be the group generated by T and let S = {(g, φ) ∈ 〈T 〉 |
gV φ is imbedded in X}. Consider

X̃ = X ∩
( ⋂

(g,φ)∈S

g−1Xφ−1)
.

We have that V is an irreducible component of X̃ and δ(X̃) = δ(X) = δ0(V ). Moreover,

no gV φ is imbedded in X̃, for (g, φ) ∈ 〈T 〉. Assume by contradiction that there is a

gV φ imbedded in X̃. Since X̃ ⊂ X, gV φ is imbedded in X and so (g, φ) ∈ S. By

induction, we suppose (gn, φn) ∈ S for some n ≥ 1. Then X̃ ⊂ g−nXφ−n
and so gV φ

is imbedded in g−nV φ−n
; which implies (gn+1, φn+1) ∈ S. Therefore, (gn, φn) ∈ S for

every n ∈ N>0. In particular, taking n = lcm(ord(g), ord(φ)) we will have (1, Id) ∈ S
which is a contradiction.

Next we define

Y =
⋃

(g,φ)∈T

gX̃φ.

Then
⋃

(g,φ) gV
φ ⊂ Y and δ(Y ) ≤ tδ(X̃) = tδ0(V ) by Lemma 2.6. Moreover, no gV φ

is imbedded in Y , for (g, φ) ∈ T . Assume by contradiction that there is a (g, φ) ∈ T
such that gV φ is imbedded in Y . Then, there exists some (g0, φ0) ∈ T such that gV φ is

imbedded in g0X̃
φ0 . Thus g−1

0 gV φ−1
0 φ is imbedded in X̃ and, since (g−1

0 g, φ−1
0 φ) ∈ G,

this contradicts the definition of X̃. �

Let V ⊂ Gnm be any subvariety. We say that V is minimally defined over K, if K is
the minimal Galois extension of Q such that V is defined over K.

If K is an abelian extension, by the Kronecker-Weber theorem, we have that K is
contained in a cyclotomic extension of Q. In fact, there is a unique minimal cyclo-
tomic extension Q(ζN ) containing K [Nar04, Theorem 4.27(v)]. If N ≡ 2 (mod 4), then
Q(ζN ) = Q(ζN/2). Therefore, we can always choose N 6≡ 2 (mod 4).

The following lemma is a key ingredient in the proof of Theorem 3.4.

Lemma 2.8. Let V ⊆ Gnm be an irreducible variety of dimension d = n− k, minimally
defined over K. Let φ ∈ Gal(K/Q) and let e ∈ µn∞.

(a) If eV φ 6= V , then there exists a homogeneous polynomial F of degree at most
2k(2d+ 1)δ0(V ) such that F ≡ 0 in eV φ and F 6≡ 0 in V .
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(b) If [2]−1(eV φ) 6= V , then there exists a homogeneous polynomial G of degree at
most 2nk(2d+ 1)δ0(V ) such that G ≡ 0 in [2]−1(eV φ) and G 6≡ 0 in V .

Proof.

(a) Since V is an irreducible variety, eV φ is also irreducible and of the same degree.
By Theorem 2.4 we get, for any ν ∈ N,

H(eV φ; ν) ≤
(
ν + d
d

)
deg(V ).

On the other hand, let V ′ = V ∪ eV φ. This is a d-equidimensional variety of
degree 2 deg(V ). Thereby, using Theorem 2.5 we have, for any ν > m,

H(V ′; ν) ≥
(
ν + d−m

d

)
2 deg(V ),

where m = k(δ0(V ′)− 1). In particular, m ≤ 2kδ0(V ) due to Lemma 2.7.
Taking ν = m(2d+ 1) we obtain(
ν + d
d

)(
ν + d−m

d

)−1

≤
(

1 +
m

ν −m

)d
=

(
1 +

1

2d

)d
≤ e1/2 < 2.

Hence, H(eV φ; ν) < H(V ′; ν).
This means that there exists a homogeneous polynomial F of degree ν such

that F ≡ 0 on eV φ and F 6≡ 0 on V ′ = eV φ ∪ V . In particular F 6≡ 0 on V .
Moreover, deg(F ) = ν ≤ 2k(2d+ 1)δ0(V ), which proves (a).

(b) Let W = [2]−1(eV φ). This is a d-equidimensional variety of degree 2k deg(V ).
By Theorem 2.4 we get, for any ν ∈ N,

H(W ; ν) ≤
(
ν + d
d

)
2k deg(V ).

On the other hand, let E = {e0 ∈ µn∞ | e2
0 ∈ Stab(V )} and let W ′ = E · V .

This is also a d-equidimensional variety of degree 2r deg(V ), for some k < r ≤ n.
That is because E/Stab(V ) ' µr2 (see Corollary 2.3, with r = codim(Stab(V ))
and E = ϕ−1(µr2)). Thereby, using Proposition 2.5 we have, for any ν > m,

H(W ′; ν) ≥
(
ν + d−m

d

)
2r deg(V ),

where m = k(δ0(W ′)− 1). In particular, m ≤ 2nkδ0(V ) due to Lemma 2.7.
Taking ν = m(2d+ 1), we obtain:(

ν + d
d

)(
ν + d−m

d

)−1

≤ e1/2 < 2r−k.

Hence, H(W ; ν) < H(W ′, ν).

This means that there exists a homogeneous polynomial G̃ of degree ν such

that G̃ ≡ 0 on W = [2]−1(eV φ) and G̃ 6≡ 0 on W ′ = E · V . In particular, there

exists e0 ∈ E such that G̃ 6≡ 0 on e0V .

Let G(x) = G̃(e−1
0 x). We have that G ≡ 0 on e0[2]−1(eV ). By definition

of E, e0 ∈ Stab([2]−1(eV )). Hence, G ≡ 0 on [2]−1(eV ). We also have that
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G 6≡ 0 on [2]e0 · V . Since [2]e0 ∈ Stab(V ), this implies G 6≡ 0 on V . Moreover,
deg(G) = ν ≤ 2nk(2d+ 1), which proves (b).

�

3. Algebraic interpolation

We generalize [BS02, Lemma 1] to general dimension n and to any abelian extension
of Q with the following result.

Lemma 3.1. Let V ⊂ Gnm be a variety defined over Q(ζN ), with N 6≡ 2 (mod 4), and
let ω ∈ V be a torsion point.

1. If 4 - N , then one of the following is true:
(a) there exists η ∈ µn2 \ {1} such that η · ω ∈ V ;
(b) there exists η ∈ µn2 such that η · [2]ω ∈ V σ, where σ ∈ Gal(Q(ζN )/Q) maps

ζN 7→ ζ2
N .

2. If N = 4N ′, then one of the following is true:
(c) there exists η ∈ µn2 \ {1} such that η · ω ∈ V ;
(d) there exists η ∈ µn2 such that η · ω ∈ V τ , where τ ∈ Gal(Q(ζN )/Q) maps

ζN 7→ ζ1+2N ′

N .

Note that the case K = Q is included in case 1, corresponding to N = 1 (so σ is the
identity).

Proof. Let l be the order of ω, in particular ω ∈ Q(ζl).

1. By hypothesis, N is odd. Let M = lcm(N, l). We distinguish 3 cases.

(i) If l = 4l′, then M = 4M ′. In particular, we have gcd(1+2M ′,M) = 1. Therefore,

we can take a Galois automorphism τ ∈ Gal(Q(ζM )/Q) mapping ζM 7→ ζ1+2M ′

M .

Since 2M ′ ≡ 2l′ (mod l), we have that τ maps ζl 7→ ζ1+2l′

l . On the other hand,
N is odd so N |M ′ and ζN is invariant by the action of τ . Hence V τ = V and
[1 + 2l′]ω ∈ V . Choosing η = [2l′]ω ∈ µn2 \ {1}, (a) holds.

(ii) If l = 2l′ with 2 - l′, then M = 2M ′ with 2 - M ′. In particular, we have
gcd(2 + M ′,M) = 1. Therefore, we can extend σ to a Galois automorphism in

Gal(Q(ζM )/Q), mapping ζM 7→ ζ2+M ′

M (this extends σ because N is odd and

so N | M ′). Since M ′ ≡ l′ (mod l), we have that σ maps ζl 7→ ζ2+l′

l . Hence
[2 + l′]ω ∈ V σ. Choosing η = [l′]ω ∈ µn2 \ {1}, (b) holds.

(iii) If 2 - l, then 2 - M . We have that σ can be extended to a Galois automorphism
in Gal(Q(ζM )/Q) mapping ζM 7→ ζ2

M . In particular, σ maps ζl 7→ ζ2
l . Hence

[2]ω ∈ V σ. Choosing η = 1, (b) holds.

2. Let M = 4M ′ = lcm(N, l), and τ̃ be an automorphism in Gal(Q(ζM )/Q) mapping

ζ 7→ ζ2M ′+1
M . We distinguish 2 cases.

(i) If N | 2M ′, then l - 2M ′ (otherwise, we would have lcm(N, l) = 2M ′). Since

2M ′ ≡ 2l′ (mod l), we have that τ̃ maps ζl 7→ ζ1+2l′

l . On the other hand,

2M ′ ≡ 0 (mod N) and so τ̃ maps ζN 7→ ζN . Hence V τ̃ = V and [1 + 2l′]ω ∈ V .
Choosing η = [2l′]ω ∈ µn2 \ {1}, (c) holds.
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(ii) If N - 2M ′, then 2N ′ ≡ 2M ′ (mod N). We have that τ̃ maps ζN 7→ ζ1+2N ′

N thus
τ̃|Q(ζN ) = τ . Hence [2M ′ + 1]ω = [2l′ + 1]ω ∈ V τ . Choosing η = [2M ′]ω ∈ µn2 ,
(d) holds.

�

As a consequence of this lemma, for any irreducible variety V we can find another
variety V ′ containing the torsion subvariety of V but not containing V .

Proposition 3.2. Let V ⊂ Gnm be an irreducible variety, minimally defined over K such
that Vtors 6= V . Let r = codim(Stab(V )) and let ϕ : Gnm → Grm be a homomorphism1

such that Stab(V ) = Ker(ϕ).

1. If K is abelian and Q(ζN ) is a cyclotomic extension of K, with 4 - N . Then

Vtors ⊂ V ′ =
⋃

η∈µr2\{1}

(ϕ−1(η)V ) ∪
⋃
η∈µr2

[2]−1(ϕ−1(η)V σ),

where σ ∈ Gal(Q(ζN )/Q), mapping ζN 7→ ζ2
N . Moreover V ′ ∩ V ( V .

2. If K is abelian and Q(ζN ) is its minimal cyclotomic extension, with N = 4N ′.
Then

Vtors ⊂ V ′ =
⋃

η∈µr2\{1}

(ϕ−1(η)V ) ∪
⋃
η∈µr2

(ϕ−1(η)V τ ),

where τ ∈ Gal(Q(ζN )/Q), mapping ζN 7→ ζ1+2N ′

N . Moreover V ′ ∩ V ( V .

3. If K is not abelian. Then Vtors ⊂ V ∩ V ς ( V , for any ς ∈ Gal(K/Qab ∩K) such
that ς 6= Id.

Note that the V ′ in the proposition are finite unions of varieties. That is because,
using Corollary 2.3(iii), for each η ∈ µr2 it suffices to take just one preimage η0 ∈ ϕ−1(η)
instead of the the whole ϕ−1(η).

Proof. 1. Let Vtors = {ω′ ∈ V | ω′ torsion point}. It is enough to see that Vtors ⊂ V ′

to prove Vtors ⊂ V ′. To show this, we take ω′ ∈ Vtors and we have that ϕ(ω′) is a torsion
point in ϕ(V ). Since ϕ(V ) is defined over Q(ζN ) with N odd, we can apply point 1 in
Lemma 3.1 to ϕ(V ), hence one of the following is true:

(a) There exists η ∈ µr2 \ {1} such that ϕ(ω′) ∈ ηϕ(V ). Hence ω′ ∈ ϕ−1(η)V . By
definition of ϕ we have that ϕ−1(η) 6∈ Stab(V ) and so (ϕ−1(η)V ) ∩ V ( V .

(b) There exists η ∈ µr2 such that [2](ϕ(ω′)) ∈ ηϕ(V )σ. So ω′ ∈ [2]−1(ϕ−1(η)V σ).
Moreover, we have that [2]−1(ϕ−1(η)V σ) ∩ V ( V . We prove this by contradic-
tion. Assume V ⊂ [2]−1(ϕ−1(η)V σ): this means that for every η0 ∈ µr2 we have
ϕ−1(η0) ∈ Stab([2]−1(ϕ−1(η)V σ) and therefore⋃

η0∈µr2

ϕ−1(η0)V ⊂ [2]−1(ϕ−1(η)V σ).

Since ϕ−1(µr2) ∩ Stab(V ) = {1} (see (a) above) and all the translates of V have
the same stabilizer, we have that that deg(

⋃
ϕ−1(η0)V ) = 2r deg(V ). On the

other hand, we have deg([2]−1(ϕ−1(η)V σ)) = 2k deg(V ), see [Hin88, Lemme 6(i)].
Since k < r, this leads to a contradiction.

1This homomorphism exists by Corollary 2.2.
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Thereby ω′ ∈ V ′ for every ω′ ∈ Vtors and thus Vtors ⊂ V ′. Moreover, V ′ ∩ V ( V .
2. The proof follows similar to the previous one, using point 2 in Lemma 3.1. Note

that in this case we need the minimality of N to guarantee that V τ 6= V and therefore
that V ∩ V ′ 6= V .

3. Every torsion coset is defined over Qab and Qab is invariant by ς. Hence, for every
torsion coset ωH ⊂ V , we have that ωH ⊂ V ς and V 6= V ς , due to the minimality of
K. �

Remark 3.3. We can consider K = C as the field of definition of V . Then it follows
equivalently to the case when K is not abelian to prove that

Vtors ⊂ V ∩ V ς ( V ,

for any ς ∈ Gal(C/Qab) such that ς 6= Id.

The following theorem is a specialization of [AV09, Theorem 1.2] to torsion subvari-
eties. Keeping the notation of Proposition 3.2, note that ϕ−1(η)2 lies in the stabilizer
of V for any η ∈ µr∞. This is a fundamental observation so that we can use Lemma 2.8
in the proof of the theorem.

Theorem 3.4. Let V ⊂ Gnm be an irreducible variety of dimension d and codimension
k. We assume that V is not a torsion coset. Let

θ0 = θ0(V ) = k(22n + 2n+1 − 2)(2d+ 1)δ0(V ).

Then Vtors is contained in a hypersurface Z of degree at most θ0, which does not con-
tain V ; that is Vtors ⊂ V ∩ Z  V .

Proof. Let V be minimally defined over K. To prove this theorem, we distinguish three
cases, according to Proposition 3.2.

1. If K is abelian and Q(ζN ) is a cyclotomic extension of K, with 4 - N , then by
point 1 in Proposition 3.2 we have that

Vtors ⊂ V ′ =
⋃

η∈µr2\{1}

(ϕ−1(η)V ) ∪
⋃
η∈µr2

[2]−1(ϕ−1(η)V σ),

where σ ∈ Gal(Q(ζN )/Q), mapping ζN 7→ ζ2
N and V ∩ V ′ ( V .

To prove the theorem we find, for each component of V ′, a hypersurface con-
taining it, but not containing V . To conclude, it is enough to take Z as the union
of these hypersurfaces and the only thing left to check is the degree of Z.

For every η ∈ µr2 \ {1}, we choose an e ∈ ϕ−1(η) and φ = Id. We use
Lemma 2.8(a) and we obtain a homogeneous polynomial Fη of degree at most
2k(2d+ 1)δ0(V ) such that Fη ≡ 0 on ϕ−1(η)V and Fη 6≡ 0 on V .

On the other hand, for every η ∈ µr2, we choose a e ∈ ϕ−1(η) and φ = σ.
We use Lemma 2.8(b) and we obtain a homogeneous polynomial Gη of degree at
most 2nk(d+ 1)δ0(V ) such that Gη ≡ 0 on [2]−1(ϕ−1(η)V ) and Gη 6≡ 0 on V .

For Z ⊂ Gnm the hypersuface defined by∏
η∈µr2\{1}

Fη(x) ·
∏
η∈µr2

Gη(x) = 0,
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we have

deg(Z) ≤
∑

η∈µr2\{1}

2k(2d+ 1)δ0(V ) +
∑
η∈µr2

2nk(2d+ 1)δ0(V ) ≤ θ0

and Vtors ⊂ V ∩ V ′ ⊂ V ∩ Z ( V .

2. If K is abelian and Q(ζN ) is its minimal cyclotomic extension, with N = 4N ′,
then by point 2 in Proposition 3.2 we have

Vtors ⊂ V ′ =
⋃

η∈µr2\{1}

(ϕ−1(η)V ) ∪
⋃
η∈µr2

(ϕ−1(η)V τ ),

where τ ∈ Gal(Q(ζN )/Q), mapping ζN 7→ ζ1+2N ′

N and V ∩ V ′ ( V . We proceed
as before.

For every η ∈ µr2 \ {1}, we choose an e ∈ ϕ−1(η) and φ = Id. We use
Lemma 2.8(a) and we obtain a homogeneous polynomial Fη of degree at most
2k(2d+ 1)δ0(V ) such that Fη ≡ 0 on ϕ−1(η)V and Fη 6≡ 0 on V .

On the other hand, for every η ∈ µr2, we choose a e ∈ ϕ−1(η) and φ = τ . We
use again Lemma 2.8(a) and we obtain a homogeneous polynomial F ′η of degree

at most 2k(2d+ 1)δ0(V ) such that F ′η ≡ 0 on ϕ−1(η)V τ and F ′η 6≡ 0 on V .
For Z ⊂ Gnm the hypersurace defined by∏

η∈µr2\{1}

Fη(x) ·
∏
η∈µr2

F ′η(x) = 0,

we have

deg(Z) ≤
∑

η∈µr2\{1}

2k(2d+ 1)δ0(V ) +
∑
η∈µr2

2k(2d+ 1)δ0(V ) ≤ θ0

and Vtors ⊂ V ∩ V ′ ⊂ V ∩ Z ( V .

3. If K is not abelian, by point 3 in Proposition 3.2, we have that Vtors ⊂ V ∩ V ς

for any ς ∈ Gal(K/Qab ∩K) such that ς 6= Id.
We choose e = 1 and φ = ς. we use Lemma 2.8(a) and we obtain a homoge-

neous polynomial F of degree at most 2k(2d + 1)δ0(V ) such that F ≡ 0 on V ς

and F 6≡ 0 on V . Therefore, if we take the hypersurface Z defined by F (x) = 0,
we have deg(Z) ≤ θ0 and Vtors ⊂ V ∩ V ς ⊂ V ∩ Z ( V .

If V is not defined over an extension of Q, we use Remark 3.3 and the proof follows
as point 3. �

4. Induction theorems

The following theorems correspond to Theorem 2.2 and Theorem 1.2 in [AV09]. Their
proofs follow similarly to the ones of Amoroso and Viada. For the convenience of the
reader, we reproduce the proofs.

Theorem 4.1. Let V0 ⊂ V1 be subvarieties of Gnm of codimension k0 and k1 respectively
and V0 irreducible. Let

θ = θ(V1) = ((2n− 1)k0(22n + 2n+1 − 2))k0−k1+1δ(V1).

Then one of the following is true:
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(a) there exists a torsion coset B such that V0 ⊆ B ⊆ V1;
(b) there exists a hypersurface Z of degree at most θ such that V0 * Z and V0,tors ⊆ Z.

Proof. We assume the statement to be false, that is:

(a’) V0 is not contained in any torsion coset B ⊂ V1;

and

(b’) for every hypersurface Z satisfying V0,tors ⊂ Z, we also have thatV0 ⊂ Z.

We define, for r = 0, . . . , k0 − k1 + 1,

Dr = ((2n− 1)k0(22n + 2n+1 − 2))rδ(V1)

and we build a chain of varieties

X0 = V1 ⊇ · · · ⊇ Xk0−k1+1

such that, for every r = 0, . . . , k0 − k1 + 1, the following hold:

(i) V0 ⊆ Xr,
(ii) each irreducible component of Xr containing V0 has codimension at least r+ k1,
(iii) δ(Xr) ≤ Dr.

If this holds for r = k0 − k1 + 1, we have a component of Xr of codimension at least
k0 + 1 containing V0 which is a contradiction.

We build the chain by recursion:

• For r = 0, X0 = V1 satisfies the properties.
• For r + 1 > 1, we assume we have already constructed Xr. Let W1, . . . ,Wt be

the irreducible components of Xr such that

V0 ⊂Wj ⇔ 1 ≤ j ≤ s.
Property (i) guarantees that s > 0 and, together with property (ii), we have that
r + k1 ≤ codim(Wj) ≤ k0 for 1 ≤ j ≤ s.

For every j = 1, . . . , s we have δ0(Wj) ≤ δ(Xr) ≤ Dr ≤ θ and V0 ⊆ Wj ⊂ V1,
with codim(Wj) = k. Hence, by hypothesis (a’), Wj is not a torsion coset and
we can apply Theorem 4.1 to Wj . Let Zj be the hypersurface of degree at most

(2d+ 1)k(22k + 2k+1 − 2)δ0(Wj) ≤ (2n− 1)k0(22k0 + 2k0+1 − 2)Dr = Dr+1 such

that Wj,tors ⊆ Wj ∩ Zj  Wj . Since V0 ⊆ Wj , V0,tors ⊆ Wj,tors ⊂ Zj and
deg(Zj) ≤ Dr+1 ≤ θ, hypothesis (b’) guarantees that V0 ⊂ Zj .

So

V0 ⊂
s⋂
j=1

Zj ,

and we define

Xr+1 = X ∩
s⋂
j=1

Zj .

In particular, V0 ⊆ Xr+1 and property (i) is satisfied. Moreover, property (iii) is
also satisfied, because

δ(Xr+1) = max{δ(Xr), degZ1, . . . ,degZs} ≤ max{Dr, Dr+1} = Dr+1.

By taking W ′j = Wj ∩ Z1 ∩ · · · ∩ Zs for every j = 1, . . . , t we have

Xr+1 = W ′1 ∪ · · · ∪W ′s ∪W ′s+1 ∪W ′t .
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For j = 1, . . . , s, we have that every irreducible component of W ′j has codi-

mension at least codim(Wj) + 1 ≥ r + k1 + 1. And for j = s + 1, . . . , t we have
that V0 6⊂Wj , thus V0 is not contained in any irreducible component of W ′j . This

shows that property (ii) is satisfied.

�

Theorem 1.3. Let V ⊂ Gnm be a variety of dimension d. For j = 0, . . . , d , let V j
tors be

the j-equidimensional part of Vtors. Then

deg(V j
tors) ≤ cn,jδ(V )n−j

for every i = 0, . . . , d , where

cn,j = ((2n− 1)(n− 1)(22n + 2n+1 − 2))d(n−j).

Proof. If dim(V ) = 0, card(Vtors) ≤ deg(V ) ≤ δ(V )n and we are done. Hence, we
suppose dim(V ) > 0.

Let

θ = θ(V ) = ((2n− 1)(n− 1)(22n + 2n+1 − 2))dδ(V ).

Observe that cn,jδ(V )n−j = θn−j .

Let V = Xd∪· · ·∪X0, where Xj represents the j-equidimensional part of V for every j.
We have Vtors = V d

tors ∪ · · · ∪ V 0
tors and we build the family V d

tors, . . . , V
0

tors recursively as
follows:

Claim. For every r = d, . . . , 0 there exist an r-equidimensional varietie Y r, such that

(i) Vtors ⊆ V d
tors ∪ · · · ∪ V r+1

tors ∪ Y r ∪Xr−1 ∪ · · · ∪X0;

(ii)
∑r+1

i=d θ
i−r deg(V i

tors) + deg(Y r) ≤
∑r

i=d θ
i−r deg(Xi).

If the claim holds for r = 0, by assertion (i) we have V 0
tors ⊂ Y 0. Moreover, assertion

(i) also guarantees that V r
tors ⊂ Y r which, using assertion (ii), implies

r∑
i=d

θi−r deg(V i
tors) ≤

r∑
i=d

θi−r deg(Xi)

A result of Philippon [Phi95, Corollaire 5] (with m = n and S = Pn) shows that,
for θ ≥ δ(V ), we have

d∑
i=r

θi−r deg(Xi) ≤ θn−r.

Hence, setting r = 0, we obtain

d∑
i=0

θi deg(V i
tors) ≤ θn

and the inequalities of the statement follow trivially.
It remains to prove the claim. We build the family as follows.

• For r = d, we take Y d = Xd and the claim holds.
• Let d ≥ r > 0. We assume that we have Y r satisfying the claim. If Y r has a

component which is imbedded in V d
tors∪ · · ·∪V r+1

tors or a component that does not
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intersect Vtors, we descart it (this won’t have any effect on the veracity of our
claim). Next, let

Y r = V r
tors ∪W1 ∪ · · · ∪Ws

be the decomposition of Y r such that V r
tors is the union of all torsion cosets

B of dimension r which are components of Y r, and W1, . . . ,Ws are the rest of
irreducible components of Y r.

For every j = 1, . . . , s , Wj satisfies the following remark.

Remark. There does not exist any torsion coset B such that Wj ⊆ B ⊆ V .

Proof. If a torsion coset B as such exists, B ⊂ Vtors and dim(B) ≥ r. Therefore

Wj ⊆ B ⊆ V d
tors ∪ · · · ∪ V r

tors,

which contradicts the definition of V r
tors or the fact that no component of Y r is

imbedded in V d
tors ∪ · · · ∪ V r+1

tors . �

We apply Theorem 4.1 to V0 = Wj and V1 = V , where k0 = n − r ≤ n − 1
and k1 = n − d. Conclusion (a) of the theorem cannot be true, due to the
previous remark; hence there exists a hypersurface Zj of degree at most θ such

that Wj,tors ⊂Wj ∩Zj  Wj . Krull’s Hauptschatz implies that Wj ∩Zj is either
empty or an (r − 1)-equidimensional variety. This allows us to define Y r−1 as
follows:

Y r−1 = Xr−1 ∪
s⋃
j=1

(Wj ∩ Zj).

By the construction of Y r−1, assertion (i) of our claim is satisfied for r − 1.
Moreover, by Bézout’s theorem, the following inequality holds

deg(Y r−1) ≤ θ
s∑
j=1

deg(Wj) + deg(Xr−1).

Since Y r = V r
tors ∪W1 ∪ · · · ∪Ws, we have

deg(Y r−1) ≤ θ
(

deg(Y r)− deg(V r
tors)

)
+ deg(Xr−1).

Additioning
∑d

i=r θ
i+1−r deg(V i

tors) to both sides of the inequality, we obtain

d∑
i=r

θi+1−r deg(V i
tors) + deg(Y r−1) ≤

d∑
i=r

θi+1−r deg(V i
tors)

+θ
(

deg(Y r)− deg(V r
tors)

)
+ deg(Xr−1)

= θ

(
d∑

i=r+1

θi−r deg(V i
tors) + deg(Y r)

)

+ deg(Xr−1).
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By the induction, we have
∑d

i=r+1 θ
i−r deg(V i

tors)+deg(Y r) ≤
∑d

i=r θ
i−r deg(Xi).

Therefore

θ

(
d∑
i=r

θi−r deg(V i
tors) + deg(Y r)

)
+ deg(Xr−1) ≤

d∑
i=r−1

θi+1−r deg(Xi),

proving that assertion (ii) of our claim holds for r − 1.

�

If V is a hypersurface we can replace δ by deg(V ). Observe that this result is close
to the conjectures.

Remark. Following the theorems presented by Amoroso and Viada [AV09] we could
obtain that δ0(H) ≤ θ, for each maximal torsion coset ωH in V , δ0(H) ≤ θ. However,
we have the following sharper bound:

δ(H) ≤ nδ(V ),

which is a result of Bombieri and Gubler [BG06, Theorem 3.3.8].

Remark. In Theorem 1.3 we could give a more precise bound, depending on the field
of definition of our variety V . To understand this, first observe that the varieties V ′ we
obtain in Proposition 3.2 are defined over the same field as V . Hence, in Theorem 3.4
we could consider changing the definition of θ0, depending on the field of definition of V .

In the case that V is not defined over Qab, Theorem 3.4 remains true for

θ0 = 2k(2d+ 1)δ0(V ).

Using this definition of θ0 in the induction theorems, we can improve the bound in
Theorem 1.3 for this case. Hence, if V is not defined over Qab, the number of maximal
torsion cosets in V is bounded by

(2(2n− 1)(n− 1))n(n−k)δ(V )n.

In the case that V is defined over Qab, this sharpening of the θ0 does not change
significantly our bound since the order of n in the constant would remain essentially the
same.

5. Proof of the conjectures

In this section we prove Theorem 1.4. Observe that for any hypersurface V given
by the zeroes of a polynomial f of degree δ, Theorem 1.3 implies that the number of
isolated torsion points on V is bounded by cnδ

n. A similar result with voln(∆) instead
of δn, where supp(f) ⊂ ∆, would imply the conjectures. The idea to obtain such a result
lies in considering another hypersurface W with a degree depending only on n and such
that card(V 0

tors) ≤ voln(∆) card(W 0
tors). We are not able to give such a variety; instead,

for positive integers l ∈ Z, we build a hypersurface W of degree 2nl + c(n,∆) and such
that card(V 0

tors) ≤ c(n)l−n voln(∆) card(W 0
tors), where c(n,∆) depends only on n and ∆,

and c(n) on n. Taking the limit l→∞ we obtain the statement we expect.
First, we state a result of John [Joh48, Theorem III] which allows us to compare the

volume of any convex polytope ∆ with the volume of the ellipsoid of smallest volume
containing ∆.
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Theorem 5.1. If E is the ellipsoid of smallest volume containing a set S in Rn, then
the ellipsoid 1

nE is contained in the convex hull of S, conv(S).

An ellipsoid E is determined by an invertible matrix M ∈ GLn(R) and a vector v ∈ Rn
such that

E = MBn + v,

where Bn is the n-dimensional unit ball with center 0. In particular, the volume of E is
detemined by M since voln(E) = det(M)ωn, where ωn is the n-volume of n-sphere.

In the following theorem we consider a convex polytope ∆ with integer vertices. By
means of John’s result, we include a deformation of ∆ in a homothety of the standard
simplex Sn = {t ∈ (R≥0)n | t1 + · · ·+ tn ≤ 1} with comparable volume.

Proposition 5.2. Let ∆ be a convex polytope with integer vertexes. For any l ∈ N>0,
there exists a non-singular integer matrix Ml and an integer vector τ l such that

Ml∆ + τ l ⊂ 2n(l + n diam1(∆) + n)Sn,

and

(3) lim
l→+∞

l−n det(Ml) ≥ ωnn−n voln(∆)−1.

Proof. Translating ∆ by an integer vector, we can always assume that ∆ lies in (R≥0)n

and that ∆ ∩ {x ∈ Zn | xi = 0} 6= ∅, for every i = 1, . . . , n. Thus for any matrix
N ∈Mn×n(R) with maximum norm ‖N‖ ≤ 1, we have N ∆ ⊂ n diam1(∆)Bn.

Let E be the ellipsoid of smallest volume containing ∆. Let M ∈ GL(R) and v ∈ Rn
be the corresponding matrix and vector such that M Bn+v = E. In particular, we have
that Bn is the ellipsoid of smallest volume containing M−1∆− v.

Next, take Ml ∈ GL(Z) and vl ∈ Zn to be integer approximations of lM−1 and lv
respectively; that is

lM−1 = Ml +M ′, ‖M ′‖ < 1;

lv = vl + v′, ‖v′‖ < 1;

where ‖·‖ denotes the maximum norm. Take

τ l = (l + n diam1(∆) + n)1− vl.

We proceed to bound the domain where Ml∆ + τ l lies. To do that, we develop as
follows:

Ml∆ + τ l = l(M−1∆− v)−M ′∆ + v′ + (l + n diam1(∆) + n)1.

We have that l(M−1∆ − v) ⊂ lBn and v′ ∈ nBn. Moreover, since ‖M ′‖ ≤ 1, M ′∆ ⊂
n diam1(∆)Bn. Putting it all together we obtain

Ml∆ + τ l ⊂ (l + n diam1(∆) + n)Bn + (l + n diam1(∆) + n)1

⊂ 2n(l + n diam1(∆) + n)Sn.

It is left to prove (3). Using John’s result (Theorem 5.1), we have that E ⊂ n∆.
Therefore

voln(E) = ωn det(M) ≤ nn voln(∆).
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In addition, by our choice of Ml, we have that

lim
l→+∞

l−n det(Ml) = det(M)−1.

Inequality (3) follows directly from here.
�

This proposition allows us to extend the result in Theorem 1.3. First, we introduce
a different notion of degree. Let ∆ ⊂ Rn be a convex polytope with integral vertexes
and let ψ∆ : Gnm → PN−1, with N = card(∆ ∩ Zn), be the morphism mapping t 7→
(ta)a∈∆∩Zn . For any variety V ⊂ Gnm, we define the ∆-degree of V as

deg∆(V ) = deg(ψ∆(V )).

In particular, if V is of dimension d we can find general polynomials f1, . . . , fd with
support supp(f) ⊂ ∆ and

deg∆(V ) = card(V ∩ Z(f1, . . . , fd)),

where Z(f1, . . . , fd) is the subvariety of Gnm defined by f1, . . . , fn.

The following result is a general statement which easily implies Ruppert’s and Aliev-
Smyth’s conjectures.

Theorem 1.4. Let V ⊂ Gnm be a variety of dimension d, defined by polynomials with

support in the convex polytope ∆. For j = 0, . . . , d let V j
tors be the j-equidimensional

part of Vtors. Then

deg∆(V j
tors) ≤ c̃n,j voln(∆)

for every j = 0, . . . , d , where

c̃n,j = ((2n− 1)(n− 1)(22n + 2n+1 − 2))(n−1)(n−j)2nn2nω−1
n ,

and ωn is the volume of the n-sphere.

Proof. Let Ml and τ l be as in Proposition 5.2. Let ϕ : Gnm → Gnm be the endomorphism
defined by Ml, mapping x 7→ xMl . By Proposition 5.2, for any polynomial f with
support supp(f) ⊂ ∆, we have

supp(f(xMl) · xτ l) ⊂ 2n(l + n diam1(∆) + n)Sn.

Let W = ϕ−1(V ). Since V is defined by polynomials supported in ∆, W can be
defined by polynomials of degree at most 2n(l + diam1(∆) + n). Morover, for every

j = 0, . . . , d , we have that ϕ−1(V j
tors) = W j

tors.
Fix j. By Theorem 1.3 we have the following inequality:

(4) deg(W j
tors) ≤ cn,j2n(l + n diam1(∆) + n)n−j .

We proceed to compare deg(W j
tors) and deg∆(V j

tors). To do this, take f1, . . . , fj generic
polynomials such that supp(fi) ⊂ ∆ and

deg∆(V j
tors) = card(V j

tors ∩ Z(f1, . . . , fj)).

Since f ◦ ϕ−1 = f(xMl) and f(xMl) · xτ l define the same variety,

ϕ−1(V j
tors ∩ Z(f1, . . . , fj)) = W j

tors ∩ Z(f1(xMl) · xτ l , . . . , fj(x
Ml) · xτ l).
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Since f1, . . . , fj are generic, by Bézout we have that

card(W j
tors ∩ Z(f1(xMl) · xτ l , . . . , fj(x

Ml) · xτ l))

≤ deg(W j
tors)2n(l + n diam1(∆) + n)j .

Since card(ϕ−1(x)) = det(Ml) for any point x ∈ Gnm, we have

det(Ml) deg∆(V j
tors) = card(ϕ−1(V j

tors ∩ Z(f1, . . . , fj)))

≤ deg(W j
tors)2n(l + n diam1(∆) + n)j .

Combining this inequality with (4), we obtain

(5) deg∆(V j
tors) ≤ cn,j(2n(l + n diam1(∆) + n))n det(Ml)

−1.

By Proposition 5.2
lim
l→+∞

ln det(Ml)
−1 ≤ nnω−1

n voln(∆).

Hence, taking the limit for l→ +∞ in (5), we get

deg∆(V j
tors) ≤ cn,j2nn2nω−1

n voln(∆).

�

Let V ⊂ Gnm be a hypersurface given by a polynomial f ∈ Q[X1, . . . , Xn]. If we take
∆ = [0, d1]×· · ·× [0, dn] where (d1, . . . , dn) is the multidegree of f , Theorem 1.4 for j = 0
proves Ruppert’s conjecture (Conjecture 1.1). A slightly better result can be obtained

applying Theorem 1.3 directly to the hypersurface W defined by f(xD1
1 , . . . , xDn

n ) = 0,
with Di = d1 · · · dn/di. In this case we obtain that

V 0
tors ≤ nncn,0d1 · · · dn.

On the other hand, if we take ∆ = conv(supp(f)), Theorem 1.4 proves Aliev and
Smyth’s conjecture (Conjecture 1.2).

Moreover, by comparing the bound in Theorem 1.3 and the bound in Theorem 1.4
for the dense case (conv(supp(f)) = deg(f)Sn), we can observe that they differ only by
a multiplying factor 2nn2nωn which does not increase the order of the constant.

6. Example

We build an example to show that the exponent of d in Theorem 1.3 is optimal and
the constant cn must depend on n. To do this, we need first a result of Conway and
Jones on vanishing sums of roots of unity. Let us define, for m ∈ N>0,

Ψ(m) := 2 +
∑
p|m

p prime

(p− 2).

The result of Conway and Jones is the following.

Theorem 6.1 ([CJ76]). Let ξ1, . . . , ξN be N roots of unity. Let a1, . . . , aN ∈ Z such that
S = a1ξ1 + . . . + aNξN = 0 is minimal (i.e. there are no non-trivial vanishing subsums
of S). Let

m = lcm(ord(ξ2/ξ1), . . . , ord(ξN/ξ1)).

Then m is squarefree and Ψ(m) ≤ N .
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Example. First of all, let p1, . . . , pn be n different primes such that pi > 2n for all
i = 1, . . . , n. In particular, we will have that Ψ(pjpk) > 2n for every different j and k.
Let W be the variety defined by

g(X1, . . . , Xn) = ζp1 + · · ·+ ζpn +X1 + . . .+Xn = 0.

We claim that if ω ∈Wtors, then

{ω1, . . . , ωn} = {−ζp1 , . . . ,−ζpn}.

Proof. Take ω ∈ µn∞ such that g(ω) = 0 and consider

S = g(ω) = ζp1 + · · ·+ ζpn + ω1 + · · ·+ ωn.

Let S = S1 + · · ·+ St be a decomposition of S in minimal subsums, such that Si = 0
for every i = 1, . . . , r. If, up to reordering, t = n and Si = ζpi + ωi, we are done.

Suppose that this is not the case. Hence, there exists a minimal vanishing non-trivial
subsum S′ with at least three elements. Without loss of generality, we can assume
that S′ has ζpj and ζpk as summands, for some different j and k. We take m′ to be
the equivalent of m in Theorem 6.1 with respect to S′, we have that pjpk | m′, so
Ψ(m′) ≥ Ψ(pjpk) > 2n. On the other hand, since S′ is a minimal sum with less than 2n
summands, Theorem 6.1 states Ψ(m′) < 2n. This contradicts the fact that Ψ(m′) > 2n.
Therefore, there is no vanishing subsum of S and our claim is proved. �

Since our claim holds, we have

Wtors = {ω ∈ Gnm | {ω1, . . . , ωn} = {−ζp1 , . . . ,−ζpn}} .

So Wtors = Wtors is a discrete ensemble with n! elements.
It is enough to take V = [d]−1(W ), which is the hypersurface in Gnm defined by

f(X1, . . . , Xn) = ζp1 + · · ·+ ζpn +Xd
1 + . . .+Xd

n = 0.

Then, we have that Vtors = [d]−1(Wtors) which is the following discrete ensemble:

Vtors =
{
ω ∈ Gnm | {ωd1 , . . . , ωdn} = {−ζp1 , . . . ,−ζpn}

}
.

Hence, the number of isolated torsion points in V is n! dn. In this case, this is the number
of maximal torsion cosets in V .

By considering the homomorphism [d1, . . . , dn] : Gnm → Gnm, mapping (t1, . . . , tn) 7→
(td11 , . . . , t

dn
n ), instead of simply [d], we would obtain the variety V defined by

f(x1, . . . , xn) = ζp1 + · · ·+ ζpn +Xd1
1 + . . .+Xdn

n = 0.

In this case, the number of isolated torsion points in V is n! d1 · · · dn which shows the
effectiveness of the bound in terms of the multidegree.
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algébrique, Bull. Soc. Math. France 117 (1989), 305–318.
[CJ76] J. H. Conway and A. J. Jones, Trigonometric Diophantine equations (On vanishing sums of

roots of unity), Acta Arith. 30 (1976), 229–240.
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