A new experimental ground vehicle with hybrid control and hybrid vision sensor
Résumé
This paper presents a new hybrid control algorithm based on saturation functions and its real–time application to a ground vehicle. The hybrid control is developed from a nonlinear continuous control law and the objective is to obtain the optimal sampling period T to apply the controller in real experiences. The stability analysis was made in discrete time. The experimental platform is composed of a remote control toy car and a vision system. The vision system is built using a simple webcam and a diode laser. This system is fast, accurate, inexpensive and easy to implement. Simulations and experiments show the stability and robustness of the closed–loop system. The proposed control law performance is compared with a linear control algorithm.