Admissible initial growth for diffusion equations with weakly superlinear absorption - Archive ouverte HAL
Article Dans Une Revue Communications in Contemporary Mathematics Année : 2015

Admissible initial growth for diffusion equations with weakly superlinear absorption

Résumé

We study the admissible growth at infinity of initial data of positive solutions of $\prt_t u-\Gd u+f(u)=0$ in $\BBR_+\ti\BBR^N$ when $f(u)$ is a continuous function, {\it mildly} superlinear at infinity, the model case being $f(u)=u\ln^\ga (1+u)$ with $1<\ga<2$. We prove in particular that if the growth of the initial data at infinity is too strong, there is no more diffusion and the corresponding solution satisfies the ODE problem $\prt_t \gf+f(\gf)=0$ on $\BBR_+$ with $\gf(0)=\infty$.
Fichier principal
Vignette du fichier
admini23.pdf (270.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01136836 , version 1 (29-03-2015)
hal-01136836 , version 2 (08-05-2015)
hal-01136836 , version 3 (09-09-2015)

Identifiants

Citer

Andrey Shishkov, Laurent Véron. Admissible initial growth for diffusion equations with weakly superlinear absorption. Communications in Contemporary Mathematics, 2015, 18 (5), pp.13. ⟨hal-01136836v3⟩
124 Consultations
125 Téléchargements

Altmetric

Partager

More