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Admissible initial growth for diffusion equations with weakly superlinear absorption

Introduction and formulation of the results

Let h be a continuous nondecreasing function defined on R + and vanishing only at 0. It is well known that for any continuous and bounded function g belonging to C + b (R N ), 1 the cone of bounded nonnegative continuous functions on R N , there exists a unique weak solution u :=

u g ∈ C + b (R + × R N ) of ∂ t u -∆u + uh(u) = 0 in Q ∞ R N := R + × R N , lim t→0 u(t, .) = g locally uniformly in R N . (1.1)
Furthermore, the solution u satisfies

0 ≤ u(x, t) ≤ Φ g L ∞ (t) ∀(t, x) ∈ Q ∞ R N , (1.2) 
where Φ a is the solution of the following Cauchy problem:

Φ t + Φh(Φ) = 0 on R + , Φ(0) = a.
(1.3)

Since h(0) = 0 it follows easily that Φ a (t) 0 ∀t > 0, ∀a 0.

Moreover the family {Φ a (t)} is monotonically increasing with respect to the parameter a, and the condition:

∞ c ds sh(s) < ∞, c = const > 0, (1.4) 
is equivalent to the existence of a solution Φ ∞ (t) of equation in (1.3) such that Φ ∞ (t) < ∞, ∀t > 0 and with infinite initial data, i. e. Now we come to our main subject, to study problem (1.1) with an initial data g(x) unbounded and tending to infinity at infinity. It is clear that the character of growth of h(s) at infinity defines the class of initial functions g of solvability of problem under consideration. For example, if h(s) is bounded, then the corresponding class of solvability is the Tikhonov class [START_REF] Tychonoff | Théorèmes d'unicité pour l'équation de la chaleur[END_REF] {g : g(x) c exp(c 1 |x| 2 ), c, c 1 = const < ∞}. When h(s) tends to infinity at infinity, the class of admissible initial data is larger that the Tikhonov class. If h(s) increases at infinity fast enough in the sense that condition (1.4) is satisfied, then problem (1.1) is solvable for any nonnegative continuous function g in the sense that there exists a prospective minimal solution u g which is the limit when n → ∞ of the solutions u gn of

∂ t u -∆u + uh(u) = 0 in Q ∞ R N lim t→0 u(t, .) = gχ Bn in L 1 (R N ), (1.5) 
where B n denotes the open ball of radius n and χ A is characteristic function of the set A, and there holds 0

≤ u g ≤ Φ ∞ . (1.6)
But the main question is to know whether the prospective minimal solution is truly a solution with initial data g(.). If it is the case we say that the prospective minimal solution is the minimal solution. Another assumption on h which plays a fundamental role in the study is the so-called Keller-Osserman condition (see [START_REF] Keller | On solutions of ∆u = f (u)[END_REF], [START_REF] Osserman | On the inequality ∆u ≥ f (u)[END_REF]), ∞ a ds H(s) < ∞ for some a > 0, where

H(t) = s 0 th(t)dt. (1.7)
When this condition is satisfied, for any R > 0 there exist solutions of

-∆u + uh(u) = 0 in B R lim |x|→R u(x) = ∞. (1.8)
This condition gives rise to a localization phenomenon thanks to which we prove an existence and uniqueness result of the solution with initial data g.

Theorem A Assume r → rh(r) is convex and satisfies (1.7). Then for any g ∈ C + (R N ), u g is the minimal solution with initial data g. Furthermore it is the unique nonnegative solution of problem (1.1).

In the class of functions

h(s) of the form h(s) = s ln α (1+s), condition (1.4) is equivalent to α > 1, but condition (1.7) is equivalent to α > 2.
In general it is easy to show that condition (1.7) is stronger than condition (1.4) .

When h(s) is a power function, the class of existence and uniqueness is much larger than the class of Th. A. A complete description of this existence and uniqueness class is based upon the notion of initial trace which has been thoroughly investigated by Marcus and Véron [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF], [START_REF] Marcus | Capacitary estimates of solutions of semilinear parabolic equations[END_REF] and Gkikas and Véron [START_REF] Gkikas | Complete classification of the positive solutions of heat equation with super critical absorption[END_REF].

When ∞ a ds H(s) = ∞ ∀a > 0, (1.9) 
uniqueness may not hold in the class of unbounded solutions. If, for any b > 0, V b denotes the maximal solution of the following Cauchy problem

V rr + N -1 r V r -V h(V ) = 0 on (0, R b ) V (0) = b V r (0) = 0, (1.10) then R b = ∞.
Actually, multiplying (1.10) by V r , we get easily

2 -1 d dr |V r | 2 = d dr H(V ) - N -1 r |V r | 2 d dr H(V ).
Since V r (0) = 0, we derive

V r (r) √ 2 H(V (r)) ∀r > 0.
Integrating this last inequality we obtain the a priori estimate

V (R) = V b (R) Vb (R) ∀R > 0,
where the function Vb (R) is defined by the identity:

F b ( Vb (R)) = √ 2R ∀R > 0, where F b (v) := v b ds H(s) ,
(see e.g. [START_REF] Vàzquez | Isolated singularities of some semilinear elliptic equations[END_REF] also). Moreover it is easy to see that for arbitrary a > b > 0, V a (r) V b (r) ∀r > 0. Actually, due to the monotonicity of h, there holds

V arr (0) = 1 N V a (0)h(V a (0)) = 1 N ah(a) > 1 N bh(b) = V brr (0),
from (1.10). Since V ar (0) = V br (0) = 0 it follows from this last inequality that the function r → W (r) = V a (r) -V b (r) is increasing near r = 0; it remains increasing on whole R + , since, if we assume that there exists r 0 > 0 where W reaches a local maximum, then W r (r 0 ) = 0, W rr (r 0 ) ≤ 0, but from equation (1.10) we have:

W rr (r 0 ) = V a (r 0 )h(V a (r 0 )) -V b (r 0 )h(V b (r 0 )) > 0,
which is a contradiction. Furthermore, Nguyen Phuoc and Véron proved in [START_REF] Nguyen Phuoc | Local and global properties of solutions of heat equation with superlinear absorption[END_REF] 

that if g satisfies V c (|x|) ≤ g(x) ≤ V b (|x|) ∀x ∈ R N , (1.11) 
for some b > c > 0, then there exists at least two different solutions of (1.1) defined in Q ∞ R N : the minimal one u g which satisfies

u g (x, t) ≤ Φ ∞ (t) ∀(x, t) ∈ Q ∞ R N , (1.12) 
and another one u g such that

V c (|x|) ≤ u g (x, t) ≤ V b (|x|) ∀(x, t) ∈ Q ∞ R N . (1.13)
It is not clear wether there exists a maximal solution or not. However, if g satisfies (1.11), then there exists a minimal solution u g,c,b and a maximal one u g,c,b in the class E c,b (g) of solutions of problem (1.1), satisfying inequalities (1.13). These two solutions can be constructed by the following approximate scheme: we define the sequence {u n } of solutions of the Cauchy-Dirichlet problem

∂ t u -∆u + uh(u) = 0 in Q ∞ Bn := R + × B n u(t, x) = V c (n) in ∂ Q ∞ Bn := R + × ∂B n u(0, .) = g in B n ; (1.14)
then it is easy to check using comparison principle that the sequence {u n } is increasing and converges to u g,c,b . Similarly, the sequence {u n } of solutions of the same equation in

Q ∞

Bn with the same initial data and boundary value V b (n) is decreasing and converges to u g,c,b .

In this paper we consider the case where the initial data g grows at infinity faster than any function V b with arbitrary b < ∞. Our aim is to describe analogs of the "maximal" solution u g from (1.13) and prospective minimal solution {u g } from (1.5), (1.6). For any a > 0 we denote by u := u a,n the solution of

∂ t u -∆u + uh(u) = 0 in Q ∞ Bn := R + × B n u(t, x) = V a (n) in ∂ Q ∞ Bn := R + × ∂B n u(0, .) = min{V a , g} in B n , (1.15) Due to the comparison principle it is clear that u a,n V a in Q ∞ Bn .
The next result highlights a phenomenon of instantaneous blow-up of the maximal solution if the initial data grows too fast at infinity. Theorem B Assume r → rh(r) is convex and satisfies (1.4) and (1.9).

If g ∈ C + (R N ), satisfies lim |x|→∞ g(x) V a (|x|) = ∞ ∀a > 0, (1.16) 
then for arbitrary m ∈ N the sequence {u a,n } n>m decreases and converges in Q ∞ Bm to a function u a which is solution of (1.1) with initial data min{V a , g}. Furthermore

u a (t, x) → ∞ for any (t, x) ∈ Q ∞ R N as a → ∞.
Thus, the function identically equal to ∞ in Q ∞ R N can be considered as the "maximal" solution of problem (1.1) in the case of (1.16).

Let us remark that in subsection 3.1 we find the asymptotic expression of the functions V a for the model nonlinearities h, which makes the condition (1.16) more explicit.

A fundamental example of equations with nonlinearities satisfying (1.4) and (1.9) is provided by

∂ t u -∆u + u ln α (1 + u) = 0 in Q ∞ R N (1.17) with 1 < α ≤ 2.
With this specific type of nonlinearity we prove:

Theorem C Assume 1 < α < 2 and g ∈ C + (R N ), satisfies condition (1.16), which due to Proposition 3.1 has now the following form

lim |x|→∞ g(x) exp -c α |x| 2 2-α = ∞, c α = 2 -α 2 2 2-α .
Then the prospective minimal solution u g of (1.17) with initial data g is Φ ∞ .

Notice that the two types of generalized approximative solutions of problem (1.1), obtained in Theorems B, C, "forget" the real initial condition from (1.1): in another words, they realize infinite initial jump.

The maximal solution 2.1 Proof of Theorem A

The fact that u g is a solution of (1.1), and clearly the minimal one, is more or less standard, but we recall its proof for the sake of completeness since it contains the localization principle. For m ∈ N * let v m be the minimal solution of

-∆v + vh(v) = 0 in B m lim |x|→m v(x) = ∞. (2.1)
Such a solution exists by [START_REF] Keller | On solutions of ∆u = f (u)[END_REF] or [START_REF] Osserman | On the inequality ∆u ≥ f (u)[END_REF] because (1.7) holds. It is nonnegative and radial as limit of the nonnegative radial functions v m,k , k ∈ N * which are the solutions of (2.1) with finite boundary data v m,k = k on ∂B m . Moreover v m,k , and thus v m , is an increasing function of |x|. Clearly v m ≥ 0 and it is a stationary solution of (1.1) in Q ∞ Bm . For n ≥ m, let u gn be the solution of (1.5) and γ m = max{g(x) :

|x| ≤ m}. Then v m + γ m is a super solution of (1.5) in Q ∞ Bm which dominates u n on ∂ Q ∞ Bm ∪ {0} × B m Thus v m + γ m ≥ u n in Q ∞ Bm .
The set of functions {u n } is bounded and uniformly continuous in Q T B m-1 , by standard regularity theory for parabolic equations, thus it converges uniformly therein to u g and u g Bm×{0} = g. This implies that u g has g as initial data.

Assume now that u another solution with the same initial data g. We set w = u -u g . Since r → rh(r) is convex and u -u g is positive,

uh(u) ≥ u g h(u g ) + (u -u g )h(u -u g ).
Therefore w is a subsolution of problem (1.1), and w(t, x) → 0 as t → 0, locally uniformly in R N . By the comparison principle

w(t, x) ≤ v n (x) in Q ∞ Bn ,
where

v n satisfies (2.1) in B n . Furthermore n → v n is decreasing with limit v ∞ as n → ∞. The function v ∞ verifies -∆v + vh(v) = 0 in R N .
Furthermore it is nonnegative, radial and nondecreasing with respect to |x|. In order to prove that v = 0, we return to v n which satisfies

v n r = r 1-N r 0 s N -1 v n (s)h(v n (s))ds ≤ v n (r)h(v n (r))r 1-N r 0 s N -1 ds = r N v n (r)h(v n (r)).
Thus

-v n rr + v n (r)h(v n (r)) = N -1 r v n r ≤ 1 - 1 N v n (r)h(v n (r))
which implies

-v n rr + 1 N v n (r)h(v n (r)) ≤ 0.
Integrating twice yields

∞ vn(r) ds H(t) ≥ 2 N (n -r), (2.2) 
where H has been defined in (1.7). If we had v ∞ (r) > 0 for some r > 0, it would imply

∞ > ∞ v∞(r) ds 2H(t) ≥ ∞,
a contradiction. Thus v ∞ (r) = 0 and w(t, x) = 0.

Proof of Theorem B

We recall that (1.16) holds and that u a,n denotes the solution of (1.15). Since V a Q ∞ Bn is the solution of the Cauchy-Dirichlet problem

∂ t u -∆u + uh(u) = 0 in Q ∞ Bn := R + × B n u(t, x) = V a (n) in ∂ Q ∞ Bn := R + × ∂B n u(0, .) = V a in B n , (2.3) it is larger than u a,n . Thus u a,n+1 ∂ Q ∞ Bn ≤ u a,n ∂ Q ∞ Bn = V a . Since u a,n (0, .) = u a,n+1 Bn (0, .) it follows that u a,n+1 Q ∞ Bn ≤ u a,n .
Then {u a,n } is a decreasing sequence, and its limit u a is a solution of (1.1), which the first claim. By the same argument,

u a,n ≤ u b,n+1 Q ∞ Bn in Q ∞
Bn for b > a. Hence u a ≤ u b . We introduce the sequence {r a } : r a → ∞ as a → ∞ defined by: r a = inf{r > 0 :

g(x) V a (x) ∀ |x| r}, (2.4) 
and, for n ≥ r a , we set w a,n = V a -u a,n . By convexity w a,n satisfies

∂ t w a,n -∆w a,n + w a,n h(w a,n ) ≤ 0 in Q ∞ Bn := R + × B n , w a,n (t, x) = 0 in ∂ Q ∞ Bn := R + × ∂B n , w a,n (0, x) = (V a -g) + in B n . (2.5) Therefore w a,n (t, x) < Φ ∞ (t) in Q ∞ Bn , (2.6) 
where Φ ∞ is defined in (1.3) with a = ∞. Actually,

∞ Φ∞(t) ds sh(s) = t. (2.7)
Notice also that the sequence {w a,n } is increasing and it converges, as n → ∞, to w a = V a -u a , which is dominated by Φ ∞ Thus

u a (t, x) ≥ V a (x) -Φ ∞ (t) ≥ a -Φ ∞ (t) in Q ∞ R N . (2.8)
Letting a → ∞ implies the claim.

The prospective minimal solution

In this section we consider equation (1.17) with 1 < α < 2.

The stationary problem

Proposition 3.1 Assume 1 < α < 2, a > 0 and V a is the solution of

V rr + N -1 r V r -V ln α (V + 1) = 0 in R + V r (0) = 0 V (0) = a.
(3.1)

Then V a (r) = e cαr 2 2-α +O(1)
as r → ∞, (3.2)

where c α = 2-α 2 2 2-α .
Proof. We write W = ln(V + 1). Since V is increasing W > 0, W r ≥ 0 and

W rr + W 2 r + N -1 r W r -(1 -e -W )W α = 0 in R + . (3.3) Thus W rr + W 2 r -(1 -e -W )W α ≤ 0. If we set ρ = W and p(ρ) = W r (r), then ρ ∈ [a, ∞) and pp + p 2 -(1 -e -ρ )ρ α ≤ 0.
This is a linear differential inequality in the unknown p 2 . Integrating yields Since W (r) → ∞ as r → ∞, it follows from (3.3) and (3.4) that for any > 0 there exists r > 0 such that

p 2 (ρ) ≤ 2e -2ρ ρ a (e 2s -e s )s α ds = ρ α + O(1). (3.4) Thus W r (r) ≤ W α 2 (r) + O(1) as r → ∞ which implies W (r) ≤ c α r 2 2-α + O(1) as r → ∞. ( 3 
W rr + W 2 r ≥ (1 -)W α on [r , ∞).
Integrating this ordinary differential inequality we get

W (r) ≥ (1 -))c α r 2 2-α (1 + o(1)) as r → ∞. (3.6)
Since is arbitrary, we derive

W (r) = c α r 2 2-α (1 + o(1)) as r → ∞. (3.7)
From the above estimates, we can improve (3.6). Using (3.4) and (3.7) we deduce from (3.3):

pp + p 2 = (1 -e -ρ )ρ α - N -1 r W r ≥ (1 -e -ρ )ρ α -cρ α-1 ,
from which it follows easily 

p 2 (ρ) ≥ 2e -2ρ
W (r) = c α r 2 2-α + O(1) as r → ∞. (3.9)
Returning to V a , we derive

V a (r) = e cαr 2 2-α +O(1)
as r → ∞.

Remark. If α = 2, the same method yields V a (r) = e e r +O (1) as r → ∞.

(3.11)

Proof of Theorem C

We recall that the prospective minimal solution u g is the limit, when n → ∞ of the (increasing) sequence of solutions {u g n } of

∂ t u -∆u + u ln α (u + 1) = 0 in Q ∞ R N u(0, .) = gχ B n in R N , (3.12) 
where { n } is any increasing sequence converging to ∞. Furthermore, if we replace g by its maximal radial minorant defined by g(r) := min |x|=r g(x), it satisfies also (1.16). Because of (1.16) there exists a sequence {r n } tending to infinity such that

r n = inf{r > 0 : g(s) ≥ V n (s) ∀s ≥ r}, then g(r n ) = V n (r n ).
Step 1: Estimate from below. Put

g n (|x|) = min{g(r n ), g(|x|)} if |x| < r n g(r n ) if |x| ≥ r n .
Let u gn be the minimal solution of

∂ t u -∆u + u ln α (u + 1) = 0 in Q ∞ R N u(0, .) = g n in R N . (3.13) 
Then u gn ≤ Φ ∞ . For any sequence { k } converging to infinity and any fixed k, there exists n k such that for n ≥ n k , there holds gχ B k ≤ g n . Since the sequence {u gn } is increasing,

its limit u ∞ is a solution of (1.3) in Q R N
∞ which is larger than u g k for any k , and therefore larger also than u g. However, since g n ≤ g, u ∞ ≤ u g. This implies

u ∞ = u g Φ ∞ .
(3.14)

Next, since u gn (0, x) ≤ g(r n ), it follows that u gn (t, x) ≤ g(r n ). Let ω n = Φ g(rn) , i.e. the solution of (1.3) with a = g(r n ), then ω n satisfies

g(rn) ωn(t) ds sh(s) = t,
and u gn ≥ w n where w n is the minimal solution of

∂ t w -∆w + w ln α (ω n + 1) = 0 in Q ∞ R N w(0, .) = g n in R N . (3.15) 
If we set w n (t, x) = e -t 0 ln α (ωn(s)+1)ds z n (t, x), then In dimension N , it implies easily

∂ t z n -∆z n = 0 in Q ∞ R N z n (0, .) = g n in R N . (3.16) Since z n (t, x) = 1 (4πt) N 2 R N e -|x-
J n (t, x) ≥ e -t 0 ln α (ωn(s)+1)ds g(r n ) ercf r n + |x| 2 √ t N . (3.21) Since ercf(x) = e -x 2 x √ t (1 + O(x -2 )) as x → ∞,
we derive

J n (t, x) ≥ g(r n ) ((r n + |x|) 2 t) N 2
e -t 0 ln α (ωn(s)+1)ds-

N (rn+|x|) 2 4t 1 + O t r 2 n . (3.22) 
We write g(r) = exp(γ(r)) -1 and set

A n (t, x) = γ(r n ) - t 0 ln α (ω n (s) + 1)ds - N (r n + |x|) 2 4t -N ln(r n + |x|) - N 2 ln t.
In order to have an estimate on ω n (s), we fix t ≤ 1 and g(r n ) ≥ 1. There exists a 0 ≥ 1 such that min ω a (t)

ω a (t) + 1 : 0 ≤ t ≤ 1, a ≥ a 0 ≥ 1 2 .
In such a range of a and t, ω + ω ln α (ω + 1) = ω + ω ω + 1

(ω + 1) ln α (ω + 1)

≥ ω + 1 2 (ω + 1) ln α (ω + 1), which yields ln α (ω n (s) + 1) ≤ 2γ α-1 (r n ) 2 + (α -1)sγ α-1 (r n ) α α-1 .
From this inequality, we derive

t 0 ln α (ω n (s) + 1)ds ≤ t 0 2γ α-1 (r n ) 2 + (α -1)sγ α-1 (r n ) α α-1 ds ≤ 2 α α-1 γ(r n ) tγ α-1 (rn) 0 (2 + (α -1)τ ) -α α-1 dτ. Therefore A n (t, x) ≥ γ(r n ) - N (r n + |x|) 2 4t -N ln(r n + |x|) - N 2 ln t -2 α α-1 γ(r n ) tγ α-1 (rn) 0 (2 + (α -1)τ ) -α α-1 dτ.
(3.23)

Step 2: The maximal admissible growth. We claim that lim inf

|x|→∞ |x| -2 2-α ln g(|x|) > N 1 2-α =⇒ lim n→∞ u gn (t, x) = Φ ∞ (t) ∀(t, x) ∈ Q ∞ R N . (3.24)
By replacing τ → (2 + (α -1)τ ) -α α-1 by its maximal value on (0, tγ α-1 (r n )),

2 α α-1 γ(r n ) tγ α-1 (rn) 0 (2 + (α -1)τ ) -α α-1 dτ ≤ γ α (r n )t. Then A n (t, x) ≥ γ(r n ) - N (r n + |x|) 2 4t -N ln(r n + |x|) - N 2 ln t -γ α (r n )t := B n (t, x), (3.25) 
and

∂ t B n (t, x) = N (r n + |x|) 2 4t 2 - N 2t -γ α (r n ). Thus ∂ t B n (t, x) = 0 and t > 0 ⇐⇒ t := t n = N (r n + |x|) 2 N + N 2 + 4N (r n + |x|) 2 γ α (r n ) . ( 3 

.26)

Therefore A n (t n , x) is bounded from below by the maximum of B n (t, x) which is achieved for t = t n and Letting → 0 yields u g ≥ W m,0 in Q Bm ∞ . Since lim m→∞ φ m (x) = 1, uniformly on any compact subset of R N and lim m→∞ λ m = 0 we derive u g Φ ∞ and finally u g Φ ∞ . This inequality together with (3.14 ) leads to u = Φ ∞ .

B n (t n , x) = γ(r n ) -N ln(r n + |x|) - N + N 2 + 4N (r n + |x|) 2 γ α (r n ) 4 - N (r n + |x|) 2 γ α (r n ) N + N 2 + 4N (r n + |x|) 2 γ α (r n ) - N 2 ln N (r n + |x|) 2 N + N 2 + 4N (r n + |x|) 2 γ α (r n ) . Since r n → ∞ as n → ∞ it follows from last representation that B n (t n , x) = r n γ α 2 (r n ) γ 1-α 2 (r n ) r n -N 1 2 (1 + ν n (x)) , ( 3 
Remark. In the case α = 2, there holds where ν n (x) → 0 as n → ∞ uniformly on any compact set in R N . Thus B n (t n , x) → -∞ as n → ∞. A similar type of computation shows that the expression I n (t, x) defined in (3.17) converges to 0, whatever is the sequence {r n } converging to ∞.

lim t→0 Φ

 t→0 ∞ (t) = ∞.

. 5 )

 5 Due to (3.5) relation(3.4) yields also the following inequality 0 < W r ≤ c

e

  2s (s α -c s α-1 )ds = ρ α + O(1), (3.8) by l'Hospital rule. Combined with (3.7) and (3.5), it implies

t 0 ln 2 ( 2 + 4 - 2 ln N (r n + |x|) 2 N + N 2 + 1 2

 02242221 (ω n (s) + 1)ds ≤ 4γ(r n ) tγ(rn) 0 τ ) -2 dτ ≤ tγ(r n ).(3.30) Therefore (3.25) is replaced byA n (t, x) ≥ γ(r n ) -tγ 2 (r n ) -N (r n + |x|) 2 4t -N ln(r n + |x|) -N 2 ln t := B n (t, x). (3.31)A similarly, there exists t n > 0 where t → B n (t, x) is maximum and in that caseB n (t n , x) = γ(r n ) -N ln(r n + |x|) -N + N 2 + 4N (r n + |x|) 2 γ 2 (r n ) N (r n + |x|) 2 γ 2 (r n ) N + N 2 + 4N (r n + |x|) 2 γ 2 (r n ) -N 4N (r n + |x|) 2 γ 2 (r n ) ,which yields B n (t n , x) = γ(r n ) -r n γ(r n )(N -ν n (x)),(3.32) 

  N . We fix m > 0, denote by λ m the first eigenvalue of -∆ in H 1 0 (B m ), with corresponding eigenfunction φ m normalized by sup Bm φ m = 1 and set, for > 0,W m, (t, x) = e -(t+ )λm Φ ∞ (t + )φ m (x) ∀(t, x) ∈ Q Bm ∞ .Then∂ t W m, -∆W m, + W m, ln α (W m, + 1) = W m, ln α (W m, + 1) -ln α (Φ ∞ (t + ) + 1) ≤ 0.Since u gn increases to the prospective minimal solution u g, it follows due to (3.29 ) that there exists n such that u g(t n , x) ≥ u gn (t n , x) ≥ W m, (t n + , x) ∀x ∈ B m .

	then there holds			
	J n (t n , x) n→∞	→ ∞ =⇒ lim tn→0	u gn (t n , x) = ∞,	(3.29)
	uniformly on compact subsets of R		
					.27)
	where ν n (x) → 0 as n → ∞ uniformly on any compact set in R N . Therefore if g satisfies
	lim inf	|x| -2 2-α ln g(|x|) > N	1 2-α ,	(3.28)
	|x|→∞		

Last inequality in virtue of comparison principle implies

u g (t, x) ≥ W m, (t + , x) ∀(t, x) ∈ Q Bm ∞ , t ≥ t n .