Estimating the granularity coefficient of a Potts-Markov random field within an MCMC algorithm - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Image Processing Année : 2013

Estimating the granularity coefficient of a Potts-Markov random field within an MCMC algorithm

Résumé

This paper addresses the problem of estimating the Potts parameter β jointly with the unknown parameters of a Bayesian model within a Markov chain Monte Carlo (MCMC) algorithm. Standard MCMC methods cannot be applied to this problem because performing inference on β requires computing the intractable normalizing constant of the Potts model. In the proposed MCMC method, the estimation of β is conducted using a likelihood-free Metropolis–Hastings algorithm. Experimental results obtained for synthetic data show that estimating β jointly with the other unknown parameters leads to estimation results that are as good as those obtained with the actual value of β. On the other hand, choosing an incorrect value of β can degrade estimation performance significantly. To illustrate the interest of this method, the proposed algorithm is successfully applied to real bidimensional SAR and tridimensional ultrasound images.
Fichier principal
Vignette du fichier
Pereyra_12372.pdf (1.82 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01130731 , version 1 (12-03-2015)

Identifiants

Citer

Marcelo Alejandro Pereyra, Nicolas Dobigeon, Hadj Batatia, Jean-Yves Tourneret. Estimating the granularity coefficient of a Potts-Markov random field within an MCMC algorithm. IEEE Transactions on Image Processing, 2013, 22 (6), pp.2385-2397. ⟨10.1109/TIP.2013.2249076⟩. ⟨hal-01130731⟩
103 Consultations
204 Téléchargements

Altmetric

Partager

More