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Estimating the Granularity Coefficient
of a Potts-Markov Random Field within
a Markov Chain Monte Carlo Algorithm

Marcelo Pereyra, Nicolas Dobigeon, Hadj Batatia and Jean-Yves Tourneret

Abstract— This paper addresses the problem of estimating the
Potts parameter β jointly with the unknown parameters of a
Bayesian model within a Markov chain Monte Carlo (MCMC)
algorithm. Standard MCMC methods cannot be applied to this
problem because performing inference on β requires computing
the intractable normalizing constant of the Potts model. In the
proposed MCMC method, the estimation of β is conducted using
a likelihood-free Metropolis–Hastings algorithm. Experimental
results obtained for synthetic data show that estimating β jointly
with the other unknown parameters leads to estimation results
that are as good as those obtained with the actual value of
β. On the other hand, choosing an incorrect value of β can
degrade estimation performance significantly. To illustrate the
interest of this method, the proposed algorithm is successfully
applied to real bidimensional SAR and tridimensional ultrasound
images.

Index Terms— Bayesian estimation, Gibbs sampler, intractable
normalizing constants, mixture model, Potts-Markov field.

I. INTRODUCTION

M
ODELING spatial correlation in images is fundamental

in many image processing applications. Markov ran-

dom fields (MRFs) have been recognized as efficient tools

for capturing these spatial correlations [1]–[8]. One particular

MRF often used for Bayesian classification and segmentation

is the Potts model, which generalizes the binary Ising model

to arbitrary discrete vectors. The amount of spatial correla-

tion introduced by this model is controlled by the so-called

granularity coefficient β. In most applications, this important

parameter is set heuristically by cross-validation.

This paper studies the problem of estimating the Potts

coefficient β jointly with the other unknown parameters of a
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standard Bayesian image classification or segmentation prob-

lem. More precisely, we consider Bayesian models defined

by a conditional observation model with unknown parameters

and a discrete hidden label vector z whose prior distribution

is a Potts model with hyperparameter β (this Bayesian model

is defined in Section II). From a methodological perspective,

inference on β is challenging because the distribution f (z, β)

depends on the normalizing constant of the Potts model

(hereafter denoted as C(β)), which is generally intractable.

This problem has received some attention in the recent image

processing literature, as it would lead to fully unsupervised

algorithms [9]–[13].

In this work we focus on the estimation of β within a

Markov chain Monte Carlo (MCMC) algorithm that handles

2D or 3D data sets [14]–[18]. MCMC methods are powerful

tools to handle Bayesian inference problems for which the

minimum mean square error (MMSE) or the maximum a

posteriori (MAP) estimators are difficult to derive analytically.

MCMC methods generate samples that are asymptotically

distributed according to the joint posterior of the unknown

model parameters. These samples are then used to approximate

the Bayesian estimators. However, standard MCMC methods

cannot be applied directly to Bayesian problems based on

the Potts model. Indeed, inference on β requires computing

the normalizing constant of the Potts model C(β), which is

generally intractable. Specific MCMC algorithms have been

designed to estimate Markov field parameters in [19], [20]

and more recently in [9], [10]. A variational Bayes algorithm

based on an approximation of C(β) has also been recently

proposed in [11]. Maximum likelihood estimation of β within

expectation-maximization (EM) algorithms has been studied

in [12], [13], [21]. The strategies used in these works for

avoiding the computation of C(β) are summarized below.

A. Pseudo-Likelihood Estimators

One possibility to avoid evaluating C(β) is to eliminate

it from the posterior distribution of interest. More precisely,

one can define a prior distribution f (β) such that the nor-

malizing constant cancels out from the posterior (i.e., f (β) ∝

C(β)1R+(β), where 1R+(·) is the indicator function on R
+),

resulting in the so-called pseudo-likelihood estimators [22].

Although analytically convenient this approach can result in

poor estimation unless β is small [23].



B. Approximation of C(β)

Another possibility is to approximate the normalizing

constant C(β). Existing approximations can be classified into

three categories: based on analytical developments, on sam-

pling strategies or on a combination of both. A survey of the

state-of-the-art approximation methods up to 2004 has been

presented in [20]. The methods considered in [20] are the

mean field, the tree-structured mean field and the Bethe energy

(loopy Metropolis) approximations, as well as two sampling

strategies based on Langevin MCMC algorithms. It is reported

in [20] that mean field type approximations, which have

been successfully used within EM [24], [25] and stochastic

EM algorithms [26], generally perform poorly in MCMC

algorithms. More recently, exact recursive expressions have

been proposed to compute C(β) analytically [11]. However,

to our knowledge, these recursive methods have only been

successfully applied to small problems (i.e., for MRFs of size

smaller than 40×40) with reduced spatial correlation β < 0.5.

Another sampling-based approximation consists in estimat-

ing C(β) by Monte Carlo integration [27, Ch. 3], at the

expense of very substantial computation and possibly biased

estimations (bias arises from the estimation error of C(β)).

Better results can be obtained by using importance sampling

or path sampling methods [28]. These methods have been

applied to the estimation of β within an MCMC image

processing algorithm in [19]. Although more precise than

Monte Carlo integration, approximating C(β) by importance

sampling or path sampling still requires substantial compu-

tation and is generally unfeasible for large fields. This has

motivated recent works that reduce computation by combining

importance sampling with analytical approximations. More

precisely, approximation methods that combine importance

sampling with extrapolation schemes have been proposed for

the Ising model (i.e., a 2-state Potts model) in [9] and for the

3-state Potts model in [10]. However, we have found that this

extrapolation technique introduces significant bias [29].

C. Auxiliary Variables and Perfect Sampling

Recent works from computational statistics have estab-

lished that it is possible to avoid computing C(β) within a

Metropolis-Hastings (MH) MCMC algorithm [27] by intro-

ducing carefully selected auxiliary random variables [30], [31].

In the work of Moller et al. [30], an auxiliary vector w

distributed according to the same distribution as the label

vector z (i.e., f (z|β)) is introduced. Metropolis-Hastings

algorithms that do not require computing C(β) are then

proposed to sample the joint distribution f (β,w|z), which

admits the exact desired posterior density f (β|z) as marginal

distribution [30]. Unfortunately this method suffers from a

very low acceptance ratio that degrades severely as the dimen-

sion of z increases, and is therefore unsuitable for image

processing applications [29]. New auxiliary variable methods

with considerably better acceptance ratios have been proposed

in [31] by using several auxiliary vectors and sequential Monte

Carlo samplers [32]. These methods could be interesting for

estimating the Potts coefficient β. However they will not

be considered in this work because they require substantial

computation and are generally too costly for image processing

applications. An alternative auxiliary variable method based

on a one-sample estimator of the ratio C(β)/C(β∗) has been

proposed in [33] and recently been improved by using several

auxiliary vectors and sequential Monte Carlo samplers in [34]

(the ratio C(β)/C(β∗) arises in the MCMC algorithm defined

in Section III-C). More details on the application of [33] to the

estimation of the Potts coefficient β are provided in a separate

technical report [29].

D. Likelihood-Free Methods

Finally, it is possible to avoid computing the normalizing

constant C(β) by using likelihood-free MCMC methods [35].

These methods circumvent explicit evaluation of intractable

likelihoods within an MH algorithm by using a simulation-

based approximation. More precisely, akin to the auxiliary

variable method [30], an auxiliary vector w distributed accord-

ing to the likelihood f (z|β) is introduced. MH algorithms

that do not require evaluating f (z|β) (nor C(β)) can then be

considered to generate samples that are asymptotically distrib-

uted according to the exact posterior distribution f (β|z) [35].

Although generally unfeasible1, these exact methods have

given rise to the approximative Bayesian computation (ABC)

framework [36], which studies likelihood-free methods to gen-

erate samples from approximate posterior densities fǫ(β|z) ≈

f (β|z) at a reasonable computational cost. To our knowledge

these promising techniques, that are increasingly regarded

as “the most satisfactory approach to intractable likelihood

problems” [36], have not yet been applied to image processing

problems.

The main contribution of this paper is to propose an ABC

MCMC algorithm for the joint estimation of the label vector z,

the granularity coefficient β and the other unknown parameters

of a Bayesian segmentation problem based on a Potts model.

The estimation of β is included within an MCMC algorithm

through an ABC method particularly adapted to the Potts

model and to large data sets. It is shown that the estimation

of β can be easily integrated to existing MCMC algorithms

where β was previously assumed to be known. Applications

to large 2D and 3D images illustrate the performance of the

proposed method.

The remainder of the paper is organized as follows:

Bayesian models considered in this work are defined in

Section II. Section III describes a generic hybrid Gibbs

sampler which generates samples asymptotically distributed

according to the approximate posterior distribution of these

Bayesian models. The estimation of β using a likelihood-free

algorithm is discussed in detail in Section IV. Experiments on

synthetic and real data are presented in Sections V and VI

respectively. Conclusions are finally reported in Section VI.

II. BAYESIAN MODEL

Let rn ∈ R
+ denote the nth observation, or voxel, in a

lexicographically vectorized image r = (r1, . . . , rN )T ∈ R
N .

1In spite of being theoretically correct, exact likelihood-free algorithms
suffer from several major shortcomings that make them generally impractical
(see Section IV for more details).



We assume that r is made up by multiple regions, charac-

terized by their own statistics. More precisely, r is assumed

to be associated with K stationary classes {C1, . . . , CK } such

that the observations in the kth class are fully described by

the following conditional observation model

rn |zn = k ∼ f
(

rn|θ k

)

(1)

where f
(

rn|θ k

)

denotes a generic observation model with

parameter vector θk characterizing the class Ck . Finally, a label

vector z = (z1, . . . , zN )T is introduced to map observations r

to classes C1, . . . , CK (i.e., zn = k if and only if rn ∈ Ck).

Several works have established that a Potts model can be

used to exploit the fact that the probability P[zn = k] of a

given voxel is related to the probabilities of its neighbors.

The amount of spatial correlation between adjacent image

pixels introduced by the Potts model is controlled by the

granularity coefficient β. Existing image classification and

segmentation methods have mainly studied the estimation of

the class parameter vector θ = (θT
1 , . . . , θT

K )T and the label

vector z conditionally to a known value of β. However,

setting β incorrectly can degrade the estimation of θ and

z significantly. Moreover, fixing the value of β a priori is

difficult because different images can have different spatial

organizations. This paper considers the problem of estimating

the unknown parameter vectors θ and z jointly with β from

the observation vector r . This problem is formulated in a

Bayesian framework which requires to define the likelihood

of the observation vector r and the priors for the unknown

parameters θ , z and β.

A. Likelihood

Assuming that the observations rn are independent condi-

tionally to the label vector z, the likelihood function associated

with the image r is

f (r|θ , z, β) = f (r|θ , z) =

K
∏

k=1

∏

{n|zn=k}

f (rn |θ k) (2)

where f (rn |θk) is the generic probability density function

associated with the observation model introduced in (1).

B. Parameter Priors

1) Labels: It is natural to consider that there are some cor-

relations between the characteristics of a given voxel and those

of its neighbors. Since the seminal work of Geman [1], MRFs

have become very popular to introduce spatial correlation in

images [2], [7], [8], [24], [37], and [38]. MRFs assume that

the distribution of a pixel conditionally to all other pixels of

the image equals the distribution of this pixel conditionally to

its neighbors

f (zn |z−n) = f
(

zn |zV(n)

)

(3)

where V(n) is the index set of the neighbors of the nth voxel

(the neighborhoods used in this paper for 2D and 3D images

are depicted in Fig. 1), z−n denotes the vector z whose nth

element has been removed and zV(n) is the sub-vector of z

composed of the elements whose indexes belong to V(n).

(a) (b)

Fig. 1. (a) Four-pixel and (b) six-voxel neighborhood structures. The
pixel/voxels considered appear as a void red circle whereas its neighbors are
depicted in full black and blue.

In the case of K classes, the random variables z1, z2, . . . , zN

take their values in the finite set {1, . . . , K }. The resulting

MRF (with discrete values) is a Potts-Markov field, which

generalizes the binary Ising model to arbitrary discrete

vectors. In this study, 2D and 3D Potts-Markov fields will

be considered as prior distributions for z. More precisely, 2D

MRFs are considered for single-slice (2D) images whereas

3D MRFs are investigated for multiple-slice (3D) images.

Note that Potts-Markov fields are particularly well suited

for label-based segmentation as explained in [39]. By the

Hammersley-Clifford theorem the corresponding prior for

z can be expressed as follows

f (z|β) =
1

C(β)
exp

[

8β(z)
]

(4)

where

8β(z) =

N
∑

n=1

∑

n′∈V(n)

βδ(zn − zn′) (5)

and where δ(·) is the Kronecker function, β is the granularity

coefficient and C(β) is the partition function [37]

C(β) =
∑

z∈{1,...,K }n

exp
[

8β (z)
]

. (6)

As explained previously, the normalizing constant C(β) is

generally intractable even for K = 2 because the number of

summands in (6) grows exponentially with the size of z [40].

The hyperparameter β tunes the degree of homogeneity of

each region in the image. A small value of β induces a noisy

image with a large number of regions, contrary to a large

value of β that leads to few and large homogeneous regions.

Finally, it is interesting to note that despite not knowing C(β),

drawing labels z = (z1, . . . , zN )T from the distribution (4)

can be easily achieved by using a Gibbs sampler [27].

2) Parameter Vector θ : Assuming a priori independence

between the parameters θ1, . . . , θ K , the joint prior for the

parameter vector θ is

f (θ) =

K
∏

k=1

f (θ k) (7)

where f (θ k) is the prior associated with the parameter vector

θk which mainly depends on the application considered. Two

examples of priors f (θ) will be investigated in Section V.

3) Granularity Coefficient β: As explained previously,

fixing the value of β a priori can be difficult because different

images usually have different spatial organizations. A small

value of β will lead to a noisy classification and degrade the

estimation of θ and z. Setting β to a too large value will also



degrade the estimation of θ and z by producing over-smoothed

classification results. Following a Bayesian approach, this

paper proposes to assign β an appropriate prior distribution

and to estimate this coefficient jointly with (θ, z). In this work,

the prior for β is a uniform distribution on (0, B)

f (β) = U(0,B)(β) (8)

where B represents the maximum possible value of β (the

experiments in this work have been conducted using B = 10).

C. Posterior Distribution of (θ , z, β)

Assuming prior independence between θ and (z, β) and

using Bayes theorem, the posterior distribution of (θ , z, β)

can be expressed as follows

f (θ , z, β|r) ∝ f (r|θ, z) f (θ) f (z|β) f (β) (9)

where ∝ means “proportional to” and where the likelihood

f (r|θ , z) has been defined in (2) and the prior distributions

f (θ), f (z|β) and f (β) in (7), (4) and (8) respectively.

Unfortunately the posterior distribution (9) is generally too

complex to derive the MMSE or MAP estimators of the

unknown parameters θ , z and β. An interesting alternative

consists in using an MCMC method that generates samples

that are asymptotically distributed according to the target

distribution (9) [27]. The generated samples are then used

to approximate the Bayesian estimators. Despite their high

computational cost, MCMC methods are increasingly used

to solve difficult inference problems and have been applied

successfully in several recent image processing applications

(see [15], [16], [41]–[45] for examples in image filtering,

dictionary learning, image reconstruction, fusion and segmen-

tation). Many of these recent MCMC methods have been

proposed for Bayesian models that include a Potts MRF [14],

[15], [17], [18], [43]. However, these methods only studied

the estimation of θ and z conditionally to a known granularity

coefficient β. The main contribution of this paper is to study

Bayesian algorithms for the joint estimation of θ , z and β.

The next section studies a hybrid Gibbs sampler that generates

samples that are asymptotically distributed according to the

posterior (9). The samples are then used to estimate the

granularity coefficient β, the image labels z and the model

parameter vector θ . The resulting sampler can be easily

adapted to existing MCMC algorithms where β was previously

assumed known, and can be applied to large 2D and 3D

images. It is worth mentioning that MCMC methods are not

the only strategies that can be used for estimating θ , z, β.

Indeed, for many problems one can use the EM algorithm,

which has received much attention for mixture problems [46].

In these cases the estimation of β can be addressed using mean

field approximations [24]–[26], [47].

III. HYBRID GIBBS SAMPLER

This section studies a hybrid Metropolis-within-Gibbs sam-

pler that generates samples that are asymptotically distributed

according to (9). The conventional Gibbs sampler successively

draws samples according to the full conditional distributions

Algorithm 1 Proposed Hybrid Gibbs Sampler

associated with the distribution of interest (here the poste-

rior (9)). When a conditional distribution cannot be easily

sampled, one can resort to an MH move, which generates

samples according to an appropriate proposal and accept or

reject these generated samples with a given probability. The

resulting sampler is referred to as a Metropolis-within-Gibbs

sampler (see [27] for more details about MCMC methods).

The sampler investigated in this section is based on the condi-

tional distributions P[z|θ, β, r], f (θ |z, β, r) and f (β|θ , z, r)

that are provided in the next paragraphs (see also Algorithm 1

below).

A. Conditional Probability P[z|θ , β, r]

For each voxel n ∈ {1, 2, . . . , N}, the class label zn is a

discrete random variable whose conditional distribution is fully

characterized by the probabilities

P
[

zn =k|z−n, θ k, β, r
]

∝ f (rn |θ k, zn =k)

P
[

zn =k|zV(n), β
]

(10)

where k = 1, . . . , K , and where it is recalled that V(n) is

the index set of the neighbors of the nth voxel and K is the

number of classes. These probabilities can be expressed as

P
[

zn = k|zV(n), θ k, β, r
]

∝ πn,k (11)

with

πn,k , exp





∑

n′∈V(n)

βδ(k − zn′ )



 f (rn|θ k, zn = k).

Once all the quantities πn,k , k = 1, . . . , K , have been

computed, they are normalized to obtain the probabilities

π̃n,k , P
[

zn = k|zV(n), θ k, β, r
]

as follows

π̃n,k =
πn,k

∑K
k=1 πn,k

. (12)

Note that the probabilities of the label vector z in (12) define

an MRF. Sampling from this conditional distribution can be

achieved by using a Gibbs sampler [27] that draws discrete

values in the finite set {1, . . . , K } with probabilities (12).

More precisely, in this work z has been sampled using a 2-

color parallel chromatic Gibbs sampler that loops over n ∈

{1, 2, . . . , N} following the checkerboard sequence [48].



B. Conditional Probability Density Function f (θ |z, β, r)

The density f (θ |z, β, r) can be expressed as follows

f (θ |z, β, r) = f (θ |z, r) ∝ f (r|θ , z) f (θ) (13)

where f (r|θ , z) and f (θ) have been defined in (2) and (7).

Generating samples distributed according to (13) is strongly

problem dependent. Some possibilities will be discussed in

Sections V and VI. Generally, θ = (θT
1 , . . . , θT

K )T can be

sampled coordinate-by-coordinate using the following Gibbs

moves

θ k ∼ f (θ k |r, z) ∝
∏

{n|zn=k}

f (rn |θk) f (θ k), k = 1, . . . , K .

(14)

In cases where sampling the conditional distribution (14) is too

difficult, an MH move can be used resulting in a Metropolis-

within-Gibbs sampler [27] (details about the generation of

samples θ k for the problems studied in Sections V and VI

are provided in a separate technical report [29]).

C. Conditional Probability Density Function f (β|θ, z, r)

From Bayes rule, the conditional density f (β|θ, z, r) can

be expressed as follows

f (β|θ, z, r) = f (β|z) ∝ f (z|β) f (β) (15)

where f (z|β) and f (β) have been defined in (4) and (8)

respectively. The generation of samples according to

f (β|θ, z, r) is not straightforward because f (z|β) is defined

up to the unknown multiplicative constant 1/C(β) that

depends on β. One could think of sampling β by using an

MH move, which requires computing the acceptance ratio

ratio = min {1, ξ} (16)

with

ξ =
f (z|β∗)

f (z|β(t−1))

f (β∗)

f (β(t−1))

q(β(t−1)|β∗)

q(β∗|β(t−1))
(17)

where β∗ ∼ q(β∗|β(t−1)) denotes an appropriate proposal

distribution. Replacing (4) into (17), ξ can be expressed as

ξ =
C(β(t−1))

C(β∗)

exp
[

8β∗(z)
]

exp
[

8β(t−1)(z)
]

f (β∗)

f (β(t−1))

q(β(t−1)|β∗)

q(β∗|β(t−1))

(18)

where β∗ denotes the proposed value of β at iteration t and

β(t−1) is the previous state of the chain. Unfortunately the

ratio (18) is generally intractable because of the term C(β(t−1))
C(β∗) .

The next section presents a likelihood-free MH algorithm that

samples β without requiring to evaluate f (z|β) and C(β).

IV. SAMPLING THE GRANULARITY COEFFICIENT

A. Likelihood-Free Metropolis–Hastings

It has been shown in [35] that it is possible to define a

valid MH algorithm for posterior distributions with intractable

likelihoods by introducing a carefully selected auxiliary vari-

able and a tractable sufficient statistic on the target density.

More precisely, consider an auxiliary vector w defined in the

Algorithm 2 Exact Likelihood-Free MH Step [35]

discrete state space {1, . . . , K }N of z generated according to

the likelihood f (z|β), i.e.,

w ∼ f (w|β) ,
1

C(β)
exp

[

8β(w)
]

. (19)

Also, let η(z) be a tractable sufficient statistic of z, i.e.,

f (β|z) = f [β|η(z)]. Then, it is possible to generate samples

that are asymptotically distributed according to the exact

conditional density f (β|θ, z, r) = f (β|z) by introducing an

additional rejection step based on η(z) into a standard MH

move. Details about this sampler are provided in Algorithm 2.

Note that the MH acceptance ratio in algorithm 2 is the

product of the prior ratio f (β∗)/ f (β(t−1)) and the proposal

ratio q(β(t−1)|β∗)/q(β∗|β(t−1)). The generally intractable

likelihood ratio f (z|β∗)/ f (z|β(t−1)) has been replaced by the

simulation and rejection steps involving the discrete auxiliary

vector w. The resulting MH move still accepts candidate val-

ues β∗ with the correct probability (16) and has the advantage

of not requiring to evaluate the ratio f (z|β∗)/ f (z|β(t−1))

explicitly [35].

Unfortunately exact likelihood-free MH algorithms have

several shortcomings [36]. For instance, their acceptance ratio

is generally very low because candidates β∗ are only accepted

if they lead to an auxiliary vector w that verifies η(z(t)) =

η(w). In addition, most Bayesian models do not have known

sufficient statistics. These limitations have been addressed in

the ABC framework by introducing an approximate likelihood-

free MH algorithm (henceforth denoted as ABC-MH) [35].

Precisely, the ABC-MH algorithm does not require the use of

a sufficient statistic and is defined by a less restrictive criterion

of the form ρ
[

η(z(t)), η(w)
]

< ǫ, where η is a statistic whose

choice will be discussed in Section IV-B, ρ is an arbitrary

distance measure and ǫ is a tolerance parameter (note that

this criterion can be applied to both discrete and continuous

intractable distributions, contrary to algorithm 2 that can only

be applied to discrete distributions). The resulting algorithm

generates samples that are asymptotically distributed according

to an approximate posterior density [35]

fǫ(β|z) ≈
∑

w

f (β) f (w|β)1[ρ[η(z),η(w)]<ǫ](w) (20)



whose accuracy depends on the choice of η(z) and ǫ (if η(z)

is a sufficient statistic and ǫ = 0, then (20) corresponds to the

exact posterior density).

In addition, note that in the exact likelihood-free MH

algorithm, the auxiliary vector w has to be generated using

perfect sampling [49], [50]. This constitutes a major limitation,

since perfect or exact sampling techniques [49], [50] are too

costly for image processing applications where the dimension

of z and w can exceed one million of pixels. A convenient

alternative is to replace perfect simulation by a few Gibbs

moves with target density f (w|β∗) as proposed in [51]. The

accuracy of this second approximation depends on the number

of moves and on the initial state of the sampler. An infinite

number of moves would clearly lead to perfect simulation

regardless of the initialization. Inspired from [52], we propose

to use z as initial state to produce a good approximation with a

small number of moves. A simple explanation for this choice is

that for candidates β∗ close to the mode of f (β|z), the vector

z has a high likelihood f (z|β). In other terms, using z as initial

state does not lead to perfect sampling but provides a good

final approximation of f (β|z) around its mode. The accuracy

of this approximation can be easily improved by increasing

the number of moves at the cost of a larger computational

complexity. However, several simulation results in [29], [34]

have shown that the resulting ABC algorithm approximates

f (β|z) correctly even for a small number of moves.

B. Choice of η(z), ρ, and ǫ

As explained previously, ABC algorithms require defining

an appropriate statistic η(z), a distance function ρ and a

tolerance level ǫ. The choice of η(z) and ρ are fundamental

to the success of the approximation, while the value of ǫ is

generally less important [36]. Fortunately the Potts MRF, being

a Gibbs random field, belongs to the exponential family and

has the following one-dimensional sufficient statistic [36], [51]

η(z) ,

N
∑

n=1

∑

n′∈V(n)

δ(zn − zn′ ) (21)

where it is recalled that V(n) is the index set of the neighbors

of the nth voxel. Note that because (21) is a sufficient statistic,

the approximate posterior fǫ(β|z) tends to the exact posterior

f (β|z) as ǫ → 0 [35].

The distance function ρ considered in this work is the one-

dimensional Euclidean distance

ρ [η(z), η(w)] = |η(z) − η(w)| (22)

which is a standard choice in ABC methods [36]. Note

from (21) and (22) that the distance ρ[·, ·] between η(z) and

η(w) reduces to the difference in the number of active cliques

in z and w. It is then natural to set the tolerance as a fraction

of that number, i.e., ǫ = νη(z) (ν = 10−3 will be used in

our experiments). Note that the choice of ν is crucial when

the prior density f (β) is informative because increasing ν

introduces estimation bias by allowing the posterior density to

drift towards the prior [53]. However, in this work, the choice

of ν is less critical because β has been assigned a flat prior.

Algorithm 3 ABC Likelihood-Free MH Step [35]

C. Proposal Distribution q(β∗|β(t−1))

Finally, the proposal distribution q(β∗|β(t−1)) used to

explore the set (0, B) is chosen as a truncated normal

distribution centered on the previous value of the chain

with variance s2β

β∗ ∼ N(0,B)

(

β(t−1), s2β

)

. (23)

The variance s2β is adjusted during the burn-in period to ensure

an acceptance ratio close to 5%, as recommended in [29].

This proposal strategy is referred to as random walk MH

algorithm [27, p. 287]. The choice of this proposal distribution

has been motivated by the fact that for medium and large

problems (i.e., Markov fields larger than 50 × 50 pixels) the

distribution f (β|z) becomes very sharp and can be efficiently

explored using a random walk (note that f (β|z) depends

implicitly on the size of the problem through (5) and (6)).2

The resulting ABC MH method is summarized in

Algorithm 3 below. Note that Algorithm 3 corresponds to

step 5 in Algorithm 1.

D. Computational Complexity

A common drawback of MCMC methods is their

computation complexity, which is significantly higher than

that of deterministic inference algorithms. The introduction

of Algorithm 3 to estimate β increases the complexity of

Algorithm 1 by a factor of M + 1 with respect to the case

where β is fixed (M is the number of Gibbs iterations used

to generate the auxiliary variable w in line 3 of Algorithm 3).

Precisely, for an N-pixel image, sampling (z, θ , β) requires

generating N(M + 1) + dim θ + 1 ≈ N(M + 1) random

variables per iterations, as opposed to N + dim θ ≈ N when

β is fixed. In other terms, estimating β requires sampling the

Potts field M +1 times per iteration, once to update z, and M

2Alternatively, for smaller problems one could also consider a Beta
distribution on (0, B) as proposal for β∗, resulting in an independent MH
algorithm [27, p. 276].



TABLE I

ESTIMATION OF β

True β Aux. var [30] Exch. [33] ES [10] ABC-MH
(Algo. 3)

β = 0.2 0.20 ± 0.03 0.21 ± 0.03 0.21 ± 0.02 0.20 ± 0.03

β = 0.6 0.61 ± 0.03 0.60 ± 0.03 0.45 ± 0.04 0.60 ± 0.02

β = 1.0 1.01 ± 0.03 1.00 ± 0.02 0.77 ± 0.05 1.00 ± 0.02

β = 1.4 1.37 ± 0.06 1.41 ± 0.04 1.38 ± 0.02 1.41 ± 0.04

times to generate the auxiliary variable w. In this work w has

been sampled using M = 3 Gibbs moves, as recommended

in [52]. Note that the complexity of the proposed method

also scales linearly with the the number of image pixels N .

Moreover, in this work the number of burn-in iterations

required to reach stationarity has been determined by tracing

the chains of θ and β (note that computing quantitative conver-

gence indicators [54] would be extremely computationally and

memory intensive because of the high complexity of Algo 3).

Similarly, the total number of iterations (denoted as T in

Algorithm 1) has been determined by checking that the MMSE

estimates θ̂ and β̂ do not change significantly when including

additional iterations.

V. EXPERIMENTS

This section presents simulation results conducted on syn-

thetic data to assess the importance of estimating the hyper-

parameter β from data as opposed to fixing it a priori

(i.e., the advantage of estimating the posterior p(θ, z, β|r)

instead of fixing β). Simulations have been performed as

follows: label vectors distributed according to a Potts MRF

have been generated using different granularity coefficients (in

this section bidimensional fields of size 256×256 pixels have

been considered). Each label vector has in turn been used

to generate an observation vector following the observation

model (1). Finally, samples distributed according to the poste-

rior distribution of the unknown parameters (θ , z, β) have been

estimated from each observation vector using Algorithm 1

coupled with Algorithm 3 (assuming the number of classes

K is known). The performance of the proposed algorithm has

been assessed by comparing the Bayesian estimates with the

true values of the parameters. In all experiments the parameter

vector θ and the labels z have been initialized randomly.

Conversely, we have used β(0) = 1.0 as initial condition

for the granularity parameter. This choice has been motivated

by the fact that initializing β at a too large value degrades

the mixing properties of the sampler and leads to very long

burn-in periods. Finally, note that the experiments reported

hereafter have been computed on a workstation equipped with

an Intel Core 2 Duo @2.1 GHz processor, 3MB L2 and 3GB

of RAM memory. The main loop of the Gibbs sampler has

been implemented on MATLAB R2010b. However, C-MEX

functions have been used to simulate samples z and w.

This paper presents simulation results obtained using two

different mixture models. Additional simulation results using

other mixture models are available in a separate technical

report [29]. Detailed comparisons with the state-of-the-art

methods proposed in [10], [30], [33] are also reported in [29].

(a) (b)

Fig. 2. Probability density functions of the distributions mixed for the first
set and the second set of experiments. (a) Gamma mixture. (b) α-Rayleigh
mixture.

For completeness, a synthesis of one of these comparisons

is presented in Table I, which shows the MMSE estimates

of β corresponding to 3-state Potts MRFs simulated using

different values of β. To ease interpretation, the best result

for each simulation scenario has been highlighted in red.

Details on how these estimates have been computed and

other experiments comparing these methods can be found

in [29]. All the simulations show that the proposed ABC-MH

algorithm provides very good results.

A. Mixture of Gamma Distributions

The first experiment considers a mixture of gamma distrib-

utions. This observation model is frequently used to describe

the statistics of pixels in multilook SAR images and has

been extensively applied for SAR image segmentation [55].

Accordingly, the conditional observation model (1) is defined

by a gamma distribution with parameters L and mk [55]

rn|zn = k ∼ f (rn |θk) =

(

L

mk

)L
r L−1

n

Ŵ(L)
exp

(

−
Lrn

mk

)

(24)

where Ŵ(t) =
∫ +∞
0 ut−1e−udu is the standard gamma func-

tion and L (the number of looks) is assumed to be known

(L = 3 in this paper). The means mk (k = 1, . . . , K )

are assigned inverse gamma prior distributions as in [55].

The estimation of β, z and θ = m = (m1, . . . , mK )T is

then achieved by using Algorithm 1. The sampling strategies

described in Sections III-A and IV can be used for the gener-

ation of samples according to P[z|m, β, r] and f (β|m, z, r).

More details about simulation according to f (m|z, β, r) are

provided in the technical report [29].

The first results have been obtained for a 3-component

gamma mixture with parameters m = (1; 2; 3). Fig. 2(a)

shows the densities of the gamma distributions defining the

mixture model. Note that there is a significant overlap between

the densities making the inference problem very challenging.

For each experiment the MAP estimates of the class labels z

have been computed from a single Markov chain of T = 1 000

iterations whose first 400 iterations (burn-in period) have

been removed. Precisely, these estimates have been computed

individually for each voxel by calculating the mode of the

discrete samples z
(t)
n (t = 400, . . . , T ). Table II shows the

percentage of MAP class labels correctly estimated. The first

column corresponds to labels that were estimated jointly with

β whereas the other columns result from fixing β to different

a priori values. To ease interpretation, the best and second best



TABLE II

GAMMA MIXTURE: CLASS LABEL ESTIMATION (K = 3)

Correct Classification With β Fixed

Proposed Method β = 0.6 β = 0.8 β = 1.0 β = 1.2 β = 1.4

β̂ = 0.80 62.2% 61.6% 61.7% 58.8% 41.5% 40.1%

β̂ = 1.00 77.9% 67.3% 73.4% 77.7% 75.9% 74.2%

β̂ = 1.18 95.6% 76.6% 87.8% 94.9% 95.6% 95.5%

TABLE III

GAMMAMIXTURE: PARAMETER ESTIMATION

True MMSE True MMSE True MMSE

β 0.80 0.80 ± 0.01 1.00 1.00 ± 0.01 1.20 1.18 ± 0.02

m1 1 0.99 ± 0.02 1 1.00 ± 0.02 1 0.99 ± 0.03

m2 2 1.99 ± 0.02 2 1.98 ± 0.02 2 1.98 ± 0.07

m3 3 2.98 ± 0.03 3 2.98 ± 0.04 3 3.01 ± 0.03

results for each simulation scenario in Table II are highlighted

in red and blue. We observe that the proposed method

performs as well as if β was perfectly known. On the other

hand, setting β to an incorrect value may severely degrade

estimation performance. The average computing times for this

experiment were 151 seconds when estimating labels jointly

with β and 69 seconds when β was fixed. Moreover, Table III

shows the MMSE estimates of β and m corresponding to the

three simulations of the first column of Table II (proposed

method) as well as the standard deviations of the estimates

(results are displayed as [mean ± standard deviation]). We

observe that these values are in good agreement with the true

values used to generate the observation vectors. Finally, for

illustration purposes, Fig. 3 shows the MAP estimates of the

class labels corresponding to the simulation scenario reported

in the last row of Table II. More precisely, Fig. 3(a) depicts

the class label map, which is a realization of a 3-class Potts

MRF with β = 1.2. The corresponding synthetic image is

presented in Fig. 3(b). Fig. 3(c) shows the class labels obtained

with the proposed method and Fig. 3(d) those obtained when

β is perfectly known. Lastly, Figs. 3(e)–(h) show the results

obtained when β is fixed incorrectly to 0.6, 0.8, 1.0 and 1.4.

We observe that the classification produced by the proposed

method is very close to that obtained by fixing β to its true

value, whereas fixing β incorrectly results in either noisy or

excessively smooth results.

B. Mixture of α-Rayleigh Distributions

The second set of experiments has been conducted using a

mixture of α-Rayleigh distributions. This observation model

has been recently proposed to describe ultrasound images

of dermis [56] and has been successfully applied to the

segmentation of skin lesions in 3D ultrasound images [18].

Accordingly, the conditional observation model (1) used in

the experiments is defined by an α-Rayleigh distribution

rn |zn = k ∼ f (rn |θk) = pαR(rn |αk, γk) (25)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. Gamma mixture: estimated labels using the MAP estimators.
(a) Ground truth. (b) Observations. (c) Proposed algorithm (estimated β).
(d) True β = 1.2. (e)-(h) Fixed β = (0.6, 0.8, 1.0, 1.2, 1.4).

with

pαR(rn |αk, γk) , rn

∫ ∞

0

λ exp
[

−(γkλ)αk
]

J0(rnλ) dλ

where αk and γk are the parameters associated with the kth

class and where J0 is the zeroth order Bessel function of

the first kind. Note that this distribution has been also used

to model SAR images in [57], [58]. The prior distributions

assigned to the parameters αk and γk (k = 1, . . . , K ) are uni-

form and inverse gamma distributions as in [18]. The estima-

tion of β, z and θ = (αT , γ T )T = (α1, . . . , αK , γ1, . . . , γK )T

is performed by using Algorithm 1. The sampling strate-

gies described in Sections III-A and IV can be used for

the generation of samples according to P[z|α, γ , β, r] and

f (β|α, γ , z, r). More details about simulation according to

f (α|γ , z, β, r) and f (γ |α, z, β, r) are provided in the tech-

nical report [29].

The following results have been obtained for a 3-component

α-Rayleigh mixture with parameters α = (1.99; 1.99; 1.80)

and γ = (1.0; 1.5; 2.0). Fig. 2(b) shows the densities of the

components associated with this α-Rayleigh mixture. Again,

note that there is significant overlap between the mixture

components making the inference problem very challenging.



TABLE IV

α-RAYLEIGHMIXTURE: CLASS LABEL ESTIMATION (K = 3)

Correct Classification With β Fixed

Proposed Method β = 0.6 β = 0.8 β = 1.0 β = 1.2 β = 1.4

β̂ = 0.81 56.5% 52.3% 56.3% 44.8% 33.3% 33.4%

β̂ = 1.01 75.5% 61.1% 68.1% 75.5% 54.1% 41.7%

β̂ = 1.18 95.0% 67.7% 83.1% 94.4% 94.8% 69.5%

For each experiment the MAP estimates of the class labels z

have been computed from a single Markov chain of T = 2 000

iterations whose first 900 iterations (burn-in period) have

been removed. Again, these estimates have been computed

individually for each voxel by calculating the mode of the

discrete samples z
(t)
n (t = 900, . . . , T ). Table IV shows the

percentage of MAP class labels correctly estimated. The first

column corresponds to labels that were estimated jointly with

β whereas the other columns result from fixing β to different

a priori values. To ease interpretation, the best and second best

results for each simulation scenario in Table IV are highlighted

in red and blue. We observe that even if the mixture com-

ponents are hard to estimate, the proposed method performs

similarly to the case of a known coefficient β. Also, setting β

incorrectly degrades estimation performance considerably. The

average computing times for this experiment were 199 seconds

when estimating labels jointly with β and 116 seconds when

β was fixed. Moreover, Table V shows the MMSE estimates

of β, α and γ corresponding to the three simulations of the

first column of Table IV (proposed method). We observe that

these values are in good agreement with the true values used to

generate the observation vectors. To conclude, Fig. 4 shows

the MAP estimates of the class labels corresponding to the

simulation associated with the scenario reported in the last

row of Table IV. More precisely, the actual class labels are

displayed in Fig. 4(a), which shows a realization of a 3-class

Potts MRF with β = 1.2. The corresponding observation

vector is presented in Fig. 4(b). Fig. 4(c) and Fig. 4(d) show

the class labels obtained with the proposed method and with

the actual value of β. Lastly, Figs. 4(e)–(h) show the results

obtained when β is fixed incorrectly to 0.6, 0.8, 1.0 and 1.4.

We observe that the proposed method produces classification

results that are very similar to those obtained when β is fixed to

its true value. On the other hand, fixing β incorrectly generally

leads to very poor results.

VI. APPLICATION TO REAL DATA

After validating the proposed Gibbs sampler on synthetic

data, this section presents two applications of the proposed

algorithm to real data. Supplementary experiments using real

data are provided in the technical report [29].

A. Pixel Classification of a 2D SAR Image

The proposed method has been applied to the unsupervised

classification of a 2D multilook SAR image acquired over

Toulouse, France, depicted in Fig. 5(a) (the same region

observed by an airborne optical sensor is shown in Fig. 5(b)).

TABLE V

α-RAYLEIGHMIXTURE: PARAMETER ESTIMATION

True MMSE True MMSE True MMSE

β 0.80 0.81 ± 0.01 1.00 1.01 ± 0.02 1.20 1.18 ± 0.02

α1 1.99 1.98 ± 0.01 1.99 1.99 ± 0.01 1.99 1.99 ± 0.01

γ1 1.00 1.00 ± 0.01 1.00 1.00 ± 0.01 1.00 1.00 ± 0.01

α2 1.99 1.99 ± 0.01 1.99 1.97 ± 0.01 1.99 1.99 ± 0.01

γ2 1.50 1.47 ± 0.01 1.50 1.49 ± 0.01 1.50 1.50 ± 0.01

α3 1.80 1.80 ± 0.01 1.80 1.80 ± 0.01 1.80 1.79 ± 0.01

γ3 2.00 2.02 ± 0.01 2.00 1.97 ± 0.02 2.00 2.00 ± 0.01

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. α-Rayleigh mixture: MAP estimates of the class labels. (a) Ground
truth. (b) Observations. (c) Proposed algorithm (estimated β). (d) True β =
1.2. (e)–(h) Fixed β = (0.6, 0.8, 1.0, 1.2, 1.4).

This SAR image has been acquired by the TerraSAR-X

satellite at 1 m resolution and results from summing 3

independent SAR images (i.e., L = 3). Potts MRFs have

been extensively applied to SAR image segmentation using

different observations models [21], [59]–[61]. For simplicity

the observation model chosen in this work is a mixture of

gamma distributions (see Section V-A and the report [29] for

more details about the gamma mixture model). The proposed

experiments were conducted with a number of classes K = 4



(a) (b)

(c) (d)

Fig. 5. (a) Multilook SAR image. (b) Optical image corresponding to (a),
MAP labels when (c) β is estimated and (d) for β = 1.

(setting K > 4 resulted in empty classes). Fig. 5(c) shows

the results obtained with the proposed method. The MMSE

estimate of the granularity coefficient corresponding to this

result is β̂ = 1.62± 0.05, which has enforced the appropriate

amount of spatial correlation to handle noise and outliers

while preserving contours. Fig. 5(d) shows the results obtained

by fixing β = 1, as proposed in [60]. These results have

been computed from a single Markov chain of T = 5 000

iterations whose first 1 000 iterations (burn-in period) have

been removed. The computing times for this experiment were

102 seconds when estimating labels jointly with β and 45

seconds when β was fixed. We observe that the classification

obtained with the proposed method has clear boundaries and

few miss-classifications.

B. Lesion Segmentation in a 3D Ultrasound Image

The proposed method has also been applied to the seg-

mentation of a skin lesion in a dermatological 3D ultrasound

image. Ultrasound-based lesion inspection is an active topic

in dermatological oncology, where patient treatment depends

mainly on the depth of the lesion and the number of skin

layers it has invaded. This problem has been recently addressed

using an α-Rayleigh mixture model (25) coupled with a

tridimensional Potts MRF as prior distribution for the class

labels [18]. The algorithm investigated in [18] estimates the

label vector and the mixture parameters conditionally to a

known value of β that is set heuristically by cross-validation.

The proposed method completes this approach by including

the estimation of β into the segmentation problem. Some

elements of this model are recalled in the technical report [29].

In this experiment the number of classes has been set to

K = 4 by an expert, based on the number of biological

tissues contained in the region of interest (i.e., epidermis,

upper dermis, lower dermis, tumor).

Fig. 6(a) shows a 3D B-mode ultrasound image of a skin

lesion, acquired at 100MHz with a focalized 25MHz 3D probe

(the lesion is contained within the region of interest (ROI)

outlined by the red rectangle). Fig. 6(b) presents one slice

(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 6. (a) Log-compressed US images of skin lesion and the cor-
responding estimated class labels (lesion = black, epidermis = white,
pap. dermis = dark gray, ret. dermis = light gray). MAP estimates of the
class labels. (b) Results obtained r with the proposed method. (c)-(g) Results
obtained with the algorithm [18] for β=(0.5, 0.75, 1, 1.25, 1.5).

of the 3D MAP label vector obtained with the proposed

method. The MMSE estimate of the granularity coefficient

corresponding to this result is β̂ = 1.02 ± 0.07. To assess

the influence of β, Figs. 6(c)–(g) show the MAP class labels

obtained with the algorithm proposed in [18] for different

values of β. Labels have been computed from a single Markov

chain of T = 12 000 iterations whose first 2 000 iterations

(burn-in period) have been removed. Precisely, these estimates

have been computed individually for each voxel by calculating

the mode of the discrete samples z
(t)
n (t = 2 000, . . . , T ).

Finally, computing these estimates required 316 minutes when

estimating labels jointly with β and approximated 180 minutes

when β was fixed.

Experts from the Hospital of Toulouse and Pierre Fabre

Labs have found that the proposed method produces the most

clear segmentation, that not only sharply locates the lesion but

also provides realistic boundaries for the healthy skin layers



Fig. 7. Frontal viewpoint of a 3D reconstruction of the skin lesion.

within the region of interest. According to them, this result

indicates that the lesion, which is known to have originated at

the dermis-epidermis junction, has already invaded the upper

half of the papillary dermis. Experts have also pointed out

that the results obtained by fixing β to a small value were

corrupted by ultrasound speckle noise and failed to capture

the different skin layers. On the other hand, choosing a too

large value of β enforces excessive spatial correlation and

yields a segmentation with artificially smooth boundaries.

It should be stressed that unlike man-made structures, skin

tissues are very irregular and interpenetrate each other at the

boundaries. Finally, Fig. 7 shows a frontal viewpoint of a 3D

reconstruction of the lesion surface. We observe that the tumor

has a semi-ellipsoidal shape which is cut at the upper left

by the epidermis-dermis junction. The tumor grows from this

junction towards the deeper dermis, which is at the lower right.

VII. CONCLUSION

This paper presented a hybrid Gibbs sampler for estimating

the Potts parameter β jointly with the unknown parameters

of a Bayesian segmentation model. In most image processing

applications this important parameter is set heuristically by

cross-validation. Standard MCMC methods cannot be applied

to this problem because performing inference on β requires

computing the intractable normalizing constant of the Potts

model. In this work the estimation of β has been included

within an MCMC method using an ABC likelihood-free

Metropolis-Hastings algorithm, in which intractable terms

have been replaced by simulation-rejection schemes. The ABC

distance function has been defined using the Potts potential,

which is the natural sufficient statistic for the Potts model.

The proposed method can be applied to large images both

in 2D and 3D scenarios. Experimental results obtained for

synthetic data showed that estimating β jointly with the other

unknown parameters leads to estimation results that are as

good as those obtained with the actual value of β. On the

other hand, choosing an incorrect value of β can degrade

the estimation performance significantly. Finally, the proposed

algorithm was successfully applied to real bidimensional SAR

and tridimensional ultrasound images.

This study assumed that the number of classes K is known.

Future work could relax this assumption by studying the esti-

mation of β within a reversible jump MCMC algorithm [62],

[63], or using the non-parametric approach presented in [64].

Alternatively, one could also apply the proposed method using

different fixed values of K and then perform model choice to

determine which value of K produced the best results [51].

Other prospects for future work include the development of a

stochastic EM method where θ and z are updated determinis-

tically while β is sampled using the proposed ABC algorithm.

The application of the proposed method to estimate β within

the hyperspectral image unmixing method proposed in [17] is

currently under investigation.
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