Volume growth and rigidity of negatively curved manifolds of finite volume - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

Volume growth and rigidity of negatively curved manifolds of finite volume

Résumé

We study the asymptotic behaviour of the volume growth function of simply connected, Riemannian manifolds X of strictly negative curvature admitting a non-uniform lattice Γ. If X is asymptotically 1/4-pinched, we prove that Γ is divergent, with finite Bowen-Margulis measure, and that the volume growth of balls B(x, R) in X is asymptotically equivalent to a purely exponential function c(x)e ω(X)R , where ω(X) is the volume entropy of X. This generalizes Margulis' celebrated theorem for negatively curved spaces with compact quotients. A crucial step for this is a finite-volume version of the entropy-rigidity characterization of constant curvature spaces: any finite volume n-manifold with sectional curvature −b 2 ≤ k(X) ≤ −1 and volume entropy equal to (n − 1) is hyperbolic. In contrast, we show that for spaces admitting lattices which are not 1/4-pinched, depending on the critical exponent of the parabolic subgroups and on the finiteness of the Bowen-Margulis measure, the growth function can be exponential, lower-exponential or even upper-exponential.
Fichier principal
Vignette du fichier
dpps-margulisFINALE.pdf (336.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01130605 , version 1 (12-03-2015)

Identifiants

  • HAL Id : hal-01130605 , version 1

Citer

Françoise Dal'Bo-Milonet, Marc Peigné, Jean-Claude Picaud, Andrea Sambusetti. Volume growth and rigidity of negatively curved manifolds of finite volume. 2015. ⟨hal-01130605⟩

Relations

277 Consultations
246 Téléchargements

Partager

More