Dense Hough transforms on gray level images using multi-scale derivatives - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

Dense Hough transforms on gray level images using multi-scale derivatives

Antoine Manzanera

Résumé

The Hough transform for detecting parameterised shapes in images is still today mostly applied on binary images of contours or connected sets, which implies pre-processing of the images that may be costly and fragile. However the simple estimation of the spatial derivatives provides in every pixel the local geometry that can be used for dense voting processes, directly applied on the gray scale image. For lines and circles, the local information even allows to perform a direct 1-to-1 projection from the image to the parameter space, which greatly accelerates the accumulation process. In this paper we advocate the use of direct detection on gray scale images by combining Hough transform and multi-scale derivatives. We present the algorithms and discuss their results in the case of analytical shapes for order one (lines), and two (circles), and then we present the generalised Hough transform based on quantised derivatives for detecting arbitrary (non-analytical) shapes.
Fichier principal
Vignette du fichier
amina12.pdf (771.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01119654 , version 1 (23-02-2015)

Identifiants

  • HAL Id : hal-01119654 , version 1

Citer

Antoine Manzanera. Dense Hough transforms on gray level images using multi-scale derivatives. SIXIEME WORKSHOP AMINA 2012 "Applications Médicales de l'Informatique : Nouvelles Approches", Dec 2012, Mahdia, Tunisia. ⟨hal-01119654⟩

Collections

ENSTA ENSTA_U2IS
67 Consultations
959 Téléchargements

Partager

More