A Motion Descriptor Based on Statistics of Optical Flow Orientations for Action Classification in Video-Surveillance - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

A Motion Descriptor Based on Statistics of Optical Flow Orientations for Action Classification in Video-Surveillance

Fabio Martínez
  • Fonction : Auteur
  • PersonId : 964183
Antoine Manzanera
Eduardo Romero
  • Fonction : Auteur
  • PersonId : 953890

Résumé

This work introduces a novel motion descriptor that enables human activity classification in video-surveillance applications. The method starts by computing a dense optical flow, providing instantaneous velocity information for every pixel. The obtained flow is then characterized by a per-frame orientation histogram, weighted by the norm, with orientations quantized to 32 principal directions. Finally, a set of global characteristics is determined from the temporal series obtained from each histogram bin, forming a descriptor vector. The method was evaluated using a 192-dimensional descriptor with the classical Weizmann action dataset, obtaining an average accuracy of 95 %. For more complex surveillance scenarios, the method was assessed with the VISOR dataset, achieving a 96.7 % of accuracy in a classification task performed using a Support Vector Machine (SVM) classifier.
Fichier principal
Vignette du fichier
CMSP_P5813.pdf (628.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01119640 , version 1 (26-02-2015)

Identifiants

Citer

Fabio Martínez, Antoine Manzanera, Eduardo Romero. A Motion Descriptor Based on Statistics of Optical Flow Orientations for Action Classification in Video-Surveillance. Int. Conf. on Multimedia and Signal Processing (CMSP'12), Dec 2012, Shanghai, China. pp.267 - 274, ⟨10.1007/978-3-642-35286-7_34⟩. ⟨hal-01119640⟩

Collections

ENSTA ENSTA_U2IS
112 Consultations
564 Téléchargements

Altmetric

Partager

More