SOME QUASITENSOR AUTOEQUIVALENCES OF DRINFELD DOUBLES OF FINITE GROUPS - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2015

SOME QUASITENSOR AUTOEQUIVALENCES OF DRINFELD DOUBLES OF FINITE GROUPS

Résumé

We report on two classes of autoequivalences of the category of Yetter-Drinfeld modules over a finite group, or, equiv-alently the Drinfeld center of the category of representations of a finite group. Both operations are related to the r-th power opera-tion, with r relatively prime to the exponent of the group. One is defined more generally for the group-theoretical fusion category de-fined by a finite group and an arbitrary subgroup, while the other seems particular to the case of Yetter-Drinfeld modules. Both au-toequivalences preserve higher Frobenius-Schur indicators up to Galois conjugation, and they preserve tensor products, although neither of them can in general be endowed with the structure of a monoidal functor.
Fichier principal
Vignette du fichier
1502.02902v1.pdf (214.94 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01115406 , version 1 (11-02-2015)

Identifiants

Citer

Peter Schauenburg. SOME QUASITENSOR AUTOEQUIVALENCES OF DRINFELD DOUBLES OF FINITE GROUPS. 2015. ⟨hal-01115406⟩
97 Consultations
161 Téléchargements

Altmetric

Partager

More