Article Dans Une Revue IEEE Transactions on Information Theory Année : 2017

Exact solutions to Super Resolution on semi-algebraic domains in higher dimensions

Résumé

We investigate the multi-dimensional Super Resolution problem on closed semi-algebraic domains for various sampling schemes such as Fourier or moments. We present a new semidefinite programming (SDP) formulation of the l1-minimization in the space of Radon measures in the multi-dimensional frame on semi-algebraic sets. While standard approaches have focused on SDP relaxations of the dual program (a popular approach is based on Gram matrix representations), this paper introduces an exact formulation of the primal l1-minimization exact recovery problem of Super Resolution that unleashes standard techniques (such as moment-sum-of-squares hierarchies) to overcome intrinsic limitations of previous works in the literature. Notably, we show that one can exactly solve the Super Resolution problem in dimension greater than 2 and for a large family of domains described by semi-algebraic sets.
Fichier principal
Vignette du fichier
ArXivHAL.pdf (494.11 Ko) Télécharger le fichier
figex1.jpg (33.68 Ko) Télécharger le fichier
figex2.jpg (46.59 Ko) Télécharger le fichier
figex3.jpg (46.06 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01114328 , version 1 (09-02-2015)
hal-01114328 , version 2 (10-02-2020)

Identifiants

Citer

Yohann de Castro, Fabrice Gamboa, Didier Henrion, Jean-Bernard Lasserre. Exact solutions to Super Resolution on semi-algebraic domains in higher dimensions. IEEE Transactions on Information Theory, 2017, 63 (1), pp. 621-630. ⟨10.1109/TIT.2016.2619368⟩. ⟨hal-01114328v2⟩
681 Consultations
324 Téléchargements

Altmetric

Partager

More