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EXACT SOLUTIONS TO SUPER RESOLUTION ON

SEMI-ALGEBRAIC DOMAINS IN HIGHER DIMENSIONS

Y. DE CASTRO, F. GAMBOA, D. HENRION, AND J.-B. LASSERRE

Abstract. We investigate the multi-dimensional Super Resolution problem
on closed semi-algebraic domains for various sampling schemes such as Fourier

or moments. We present a new semidefinite programming (SDP) formulation

of the `1-minimization in the space of Radon measures in the multi-dimensional
frame on semi-algebraic sets.

While standard approaches have focused on SDP relaxations of the dual

program (a popular approach is based on Gram matrix representations), this
paper introduces an exact formulation of the primal `1-minimization exact re-

covery problem of Super Resolution that unleashes standard techniques (such

as moment-sum-of-squares hierarchies) to overcome intrinsic limitations of pre-
vious works in the literature. Notably, we show that one can exactly solve the

Super Resolution problem in dimension greater than 2 and for a large family

of domains described by semi-algebraic sets.

1. Introduction

1.1. Super Resolution. The early formulation of the Super Resolution problem
can be identified as the ability of faithfully reconstruct a high-dimensional sparse
vector from the observation of a low-pass filter. This situation models important
applications in imaging spectroscopy [HGTB94], image processing [PPK03], radar
imaging [OBP94], or astronomy [MM05]. As a theoretical baseline, suppose that
one wants to reconstruct a vector x? by solving a system of linear equations:

(1.1) Ax = b where x ∈ RN , b := Ax? , b ∈ Rm and m� N .

If the number s of non-vanishing components of x? is small and the matrix A
enjoys some geometric property, namely the Null Space Property [CDD09], that
depends only on its kernel and the sparsity s, then one can exactly reconstruct x?

by minimizing the `1-norm within the affine subspace of all solutions of the linear
system. Conditions on m, N , s and properties have been extensively studied, see
for example [Don06b], [CDD09] and reference therein. Less than ten year ago, Su-
per Resolution has seeded the ideas of compressed sensing theory [Don06a], [CT06],
[CT07]. In this theory, the matrix A is randomized and one is interested both in
the construction of probability distributions allowing to show relevant properties,
such as the Restricted Isometry Property [CT06], and the stability of the recon-
struction process. This area of research is very fruitful and leads to many practical
applications in signal and image processing, see for example [HS09], [TG07], or
[CTL08]. To the best of our knowledge, the first mathematical works on Super
Resolution are due to Donoho et al in the early ninety, see [DS89] and [Don92]. In
these papers, the term Super Resolution appeared because the matrix A is related
to a discretization of some Fourier transform. As a matter of fact, when inverting
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a discrete Fourier transform, the separation of two close spikes in a sparse signal
is made possible by minimizing the `1-norm while a linear inversion method is not
able to do so. Beside, in these years, many applied researchers were performing
Fourier inversion of non negative sparse signals using some entropy regularization,
see for example [SG87] and [Bur67]. At this time, the respective roles of sparsity
and non negativity in regard of spikes separation from non linear Fourier inversion
methods was not completely clear. An important step for understanding these roles
has been taken by lifting the linear equation (1.1) up to the more abstract measure
set up, see [Gas90], [GG96] and [DG96]:

(1.2) 〈ai, µ〉 =

∫
X

ai(x)µ(dx) = bi where µ ∈ R(X)+ and i = 1, . . . ,m .

Here, (ai(x)) is a vector of continuous function defined on X, a given compact
subset of Rn, b = (bi) ∈ Rm and R(X)+ is the set of all nonnegative Radon
measures on X. In this frame, there exists very special points b? such that the set
of all members of R(X)+ satisfying (1.2) for b = b? reduces to a singleton {µb?}.
Furthermore, µb? is a discrete measure concentrated on very few points. Hence,
if one deals with a b close to a point b? the set of all solutions of (1.2) (or (1.1)
with positivity constraint and a design matrix A discretizing the vectorial function
(ai(x))mi=1) is very small. So that, two different methods for selecting a member
of this set will lead to similar solutions. We refer to [Ana92], [GG96] and [DG96]
where quantitative evaluations on the size of the set of solutions is performed and
to [GG94] and [Lew96] for related evaluations in another context. Notice that the
structure of points b? can be completely described in the case where the family of
functions (ai) is a Chebyshev system, T -system for short, this includes the case of
discrete Fourier transform and moments, see [BE95] or [KS66] for an exhaustive
overview on these systems of functions. A more involved situation is when (1.2)
does not enjoy the non negativity assumption on the measure. This means that
one wishes to solve the linear equation:

(1.3) 〈ai, µ〉 =

∫
X

ai(x)µ(dx) = bi where µ ∈ R(X) and i = 1, . . . ,m .

Here, R(X) is the set of signed Radon measures on X. This is the frame of the
present paper. Surprisingly, as shown by authors of this paper [dCG12] and under
some assumptions on the family of functions (ai), there exists pairs (b?, µb?) ∈
Rm × R(X) such that b?i = 〈ai, µb?〉, for i = 1, · · · ,m, and µb? is the unique
solution of (1.3) minimizing the total variation norm with b = b?. Such µb? are
sparse in the sense that they are measures with finite support.

The study of the solutions to (1.1) and (1.3) uncovers that `1-minimization faith-
fully reconstruct objects concentrated on very few points. However, the analysis
in Super Resolution differs dramatically from Compressed Sensing. For instance,
it is well known that sparse `1-minimization cannot be successful in the ultrahigh-
dimensional setting [Ver12] where N � exp(m). Indeed it was shown in [CGLP12]
that one needs at least m ≥ (cst)s log(N/s) measures to faithfully uncover s sparse
vectors by `1-minimization. Hence, the analysis of Compressed Sensing in terms of
high-dimensional random geometry [CGLP12] cannot be extended to the space of
measure. Moreover, observe that Compressed Sensing aims at recovering a sparse
signal from random projection while, in Super Resolution, the sampling scheme is
deterministic.

Admittedly their analysis differ but we can bridge the gap between (1.1) and
(1.3) by considering their dual formulations. From the point of view of convex
analysis, we see that the dual form of these linear programs aims at reconstructing
a dual certificate [CT06, dCG12], i.e. an `∞-constraint linear combination of (ai),
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where (ai) are the lines of A in (1.1) and a family of continuous functions in (1.3).
As pointed out by authors of this paper [dCG12], a parallel between Compressed
Sensing and Super Resolution exists where the lines of A are the evaluation of
a vector of continuous function at some prescribed points. In this frame, Super
Resolution can be seen as a Compressed Sensing problem where the dimension N
goes to infinity. This analogy persists with the notion of dual certificate, i.e. a
solution to the following dual program (1.4). Indeed, the dual programs given by
the constraints (1.1) and (1.3) (while minimizing the `1-norm and the total variation
norm respectively) share the same expression:

(1.4) sup
u∈Rm

b>u s.t. ‖a>u‖∞≤ 1 ,

where a = A in Compressed Sensing (1.1) and a(x) = (ai(x))mi=1 is a vector of
continuous function in Super Resolution (1.3). Define a dual certificate P as:

(1.5) P = a>u? ,

where u? is a solution to the dual program (1.4). From the duality properties, note
that P is a sub-gradient of the `1-norm at a solution to the primal program (1.3).
Hence, we can ensure that a target measure µ? is a solution to (1.3) if we are able
to construct a dual polynomial (1.5) that interpolates the phases of the weights of
µ? at its support points.

From a theoretical point of view, one of the main issue in Super Resolution
consists in exhibiting such a dual certificate P. In the Fourier frame, notice that
an important construction, for target discrete measures whose support satisfy a
separable condition, is given in the fundamental paper [CFG14] where a huge step
has been taken. Indeed, the authors are the first to give a sharp condition on the
support points of the target measure in order to warrant the existence of a dual
certificate. Moreover, their proof is based on interpolating, by a Jackson kernel, the
phases of the weights of the target measure at its support points and, henceforth,
explicitly construct a dual certificate (1.5). In the Compressed Sensing frame,
observe that the same method has been investigated in [Kah11] using a Dirichlet
kernel. In the present paper, we will not deal with this issue but rather with the
practical resolution of the convex program (1.4).

In the Super Resolution frame, remark that the program (1.4) has finitely many
variables but infinitely many constraints. This last point can be a severe limitation
in practice. As a matter of fact, a difficult task is to construct a tractable program
that deals with the `∞-constraint of (1.4). Standard formulations [CFG14] are
based on Gram matrix representations, see below. Incidentally, these procedures
cannot be extended to dimension greater than 2 or to semi-algebraic domains X.
To cope with this issue, we consider a new parametrization of the primal program
based on works of the authors [Las10]. Note that our method relies on infinitely
many parameters but relaxations involving only a finite number of parameters are
proved to lead to the exact solution of the primal program.

1.2. Previous works. During the last years, theoretical guarantees for exact re-
covery [BP13, dCG12, CFG14], bounds on the support recovery from inaccurate
samplings [AdCG14, FG13], prediction of the Fourrier coefficient from noisy ob-
servations [TBR13], and noise robustness [DP13] have been showed. These works
prove that discrete measures can be recovered, in a robust manner, from few sam-
ples using an `1-method.

From a numerical point of view, a solution to `1-minimization is often com-
puted using the dual program described by (1.4). Then, the `∞-norm constraint
of the dual program (1.4) is equivalently formulated as a nonnegative constraint
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on (trigonometric) polynomials. This point of view unleashes Gram matrix rep-
resentations [CFG14] or Toeplitz matrix representations [TBR13] to handle the
constraint of non-negativity of (trigonometric) polynomials on domains. However,
these formulations are limited to the frame of the real line and the torus in di-
mension one (see [Dum07] for instance) since they rely on the Fejér-Riesz theorem.
As a matter of fact, the literature of Super Resolution has been focused on the
fact that a semidefinite programming (SDP) formulation for the dual problem can
be given as long as there exists a spectral factorization for a globally nonnega-
tive trigonometric polynomial [CFG14] (Bounded Real Lemma using Fejér-Riesz
theorem) or a spectral decomposition for semi-definite Toeplitz matrices [TBR13]
(Caratheodory-Toeplitz theorem). Hence, except on the real line and the torus in
dimension one, there is no exact SDP formulation of the Super Resolution problem
for the dual form. However, relaxed SDP versions of the dual form in dimension
greater than 2 are discussed in [XCM+14] and they have been used on the 2-sphere
in [BDF14a, BDF14b].

1.3. Contribution. To the best of our knowledge, the present paper is the first to
overcome this limitation and expand the scope of Super Resolution implementation
to the multi-dimensional frame in general basic semi-algebraic domains. Indeed,
we operate a smart method to tackle numerically the solution of equation (1.3)
with minimal `1-norm. This method uses both a re-parametrization in terms of
moment sequences [Las10] and the so-called sum-of-squares (SOS) decompositions
of nonnegative multidimensional polynomials, used widely in systems control theory
during the last decade, see for example [HG05]. Notice that, in the scope of Super
Resolution, this technique is new and, contrary to other approaches, focuses on the
primal program through a truncation of the moment sequences.

More precisely, given the real numbers bi, i = 1, . . . ,m, consider the infinite-
dimensional optimization problem:

(1.6)
inf ‖µ‖TV
s.t. 〈ai, µ〉 = bi, i = 1, . . . ,m

µ ∈ R(X),

where ‖ . ‖TV is the total variation norm of measures (to be defined later). Notice
that, under standard assumptions, problem (1.6) is feasible. That is

(1.7) ∃µ ∈ R(X) such that for i = 1, . . . ,m , 〈ai, µ〉 = bi.

Our main contribution concerns the numerical resolution of the total variation
minimization problem (1.6). We extend the univariate (n = 1) trigonometric SDP
formulation of [CFG14] to a much more general SDP formulation in dimension
n ≥ 2, for measures supported on basic semialgebraic sets.

To this end, we use the Jordan decomposition of the signed measure µ = µ+−µ−
as a difference of two nonnegative measures supported on X and we follow [Las10]
to define a hierarchy of finite-dimensional primal-dual SDP problems:

• the primal problems correspond to SDP relaxations of the conditions that
must satisfy finitely many moments of the two nonnegative measures on X;
• the dual problems correspond to SDP strengthenings using SOS multipliers

of the conditions that two distinguished polynomials are nonnegative on X.

The moment-SOS hierarchy is indexed by an integer k, called relaxation order,
which is the (half of the) number of moments used to represent the measures in the
primal problem, or equivalently, the (half of the) degree of the SOS representations
of the polynomials in the dual problem. The larger is the relaxation order k, the
larger is the size of the SDP problems, the number of variables and constraints
growing polynomially in O(kn).
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The primal SDP problem features the matrices of moments of the two nonneg-
ative measures. If the rank of each moment matrix, as a function of k, stabilizes
to a certain constant value, then the corresponding measure is atomic, with the
number of atoms equal to the rank. Therefore, the total variation minimization
problem (1.6) has been solved succesfully, and this is certified by the polynomials
solving the SDP problem. Numerical linear algebra can then be used to retrieve
the support of the optimal measure.

In the sequel, we present some examples for which our method is the first to
give an SDP formulation of the Super Resolution phenomena. As a matter of fact,
our procedure encompasses a larger class of measurements than the class of stan-
dard moments discussed previously. Our numerical experiments are carried out
with the Matlab interface GloptiPoly 3 which is designed to generate semidefinite
relaxations of measure LP problems with polynomial data. So we assume that the
functions ai(x) in LP problem (2.1) are multivariate polynomials, and for nota-

tional simplicity, we let ai(x) := xαi = x
α1

i
1 · · ·x

αn
i
n where αi ∈ Nn are given. Note

that the choice of monomials is only motivated for notational simplicity, and that
other choices of polynomials (e.g. Chebyshev polynomials) are typically preferable
numerically1. SDP relaxations are then solved with SeDuMi or MOSEK, imple-
mentations of a primal-dual interior-point algorithm. For reproducibility purposes,
our Matlab codes (using the public-domain interface GloptiPoly and the SDP solver
SeDuMi) of the numerical examples presented next are available for download at

homepages.laas.fr/henrion/software/tvsdp.tar.gz

Figure 1. Degree 9 polynomial certificate for the univariate ex-
ample, with 2 points (red) in the support of the positive part, and
1 point (blue) in the support of the negative part of the optimal
measure.

1.3.1. Disconnected domain. We want to recover the measure:

µ := δ−3/4 + δ1/2 − δ1/8

1A numerical analysis of the impact of the basis is however out of the scope of our work.

http://homepages.laas.fr/henrion/software/tvsdp.tar.gz
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on the disconnected set X := [−1,−1/2] ∪ [0, 1] which can be modeled as the
polynomial superlevel set X = {x ∈ R : g1(x) ≥ 0} for the choice:

g1(x) := −(x+ 1)(x+ 1/2)x(x− 1).

In LP (2.1) we let ai(x) := xi and bi := (−3/4)i+(1/2)i−(1/8)i for i = 0, 1, 2 . . . , 9.
Solving the SDP relaxation of order k = 5 on our standard PC takes 0.2 seconds,
and optimality is certified from the solution of the primal moment problem with a
rank 2 moment matrix for µ+ and a rank 1 moment matrix for µ−, from which the 3
points can be extracted using numerical linear algebra. On Figure 1 we represent the
degree 9 polynomial

∑9
i=0 uix

i certifying optimality, constructed from the solution
of the dual SOS problem. Indeed we can check that the polynomial attains the
value +1 at the points x = −3/4, and x = 1/2 (in red), it attains the value −1 at
the point x = 1/4 (in blue), while taking values between −1 and +1 on X. Notice
in particular that the polynomial is larger than +1 around x = −1/4, but this point
is not in X.

Figure 2. Degree 12 polynomial certificate for the bivariate ex-
ample, with 4 points (red) in the support of the positive part, and
2 points (blue) in the support of the negative part of the optimal
measure.

1.3.2. Low-pass filters in dimension greater than 3. In the Fourier frame, the recent
SDP formulations of `1-minimization in the space of complex valued measures are
based on the Fejér-Riesz theorem. As a consequence, they cannot handle dimensions
greater than 3. Observe that our procedure can bypass this limitation. For sake of
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readability, we present an example in dimension 2 although it can be extended to
any dimension. We want to recover the measure

µ := δ(−1/2,1/2) + δ(1/2,−1/2) + δ(1/2,1/2) + δ(0,0) − δ(0,−1/2) − δ(1/2,0)
on the box X := [−1, 1]2, from the knowledge of moments of degree up to 12,
i.e. ai(x) = xi for i = 0, 1, . . . , 12. Solving the SDP relaxation of order k = 6
on our standard PC takes less than 3 seconds, and optimality is certified from
the solution of the primal moment problem with a rank 4 moment matrix for
µ+ for and a rank 2 moment matrix for µ− from which the 6 points of the sup-
port of the optimal measure µ can be extracted using numerical linear algebra
with a relative accuracy around 10−6. On Figure 2 we represent the degree 12
polynomial certifying optimality, constructed from the solution of the dual SOS
problem. Indeed we can check that the polynomial attains the value +1 at the 3
points x ∈ {(−1/2, 1/2), (1/2,−1/2), (0, 0)}, it attains the value −1 at the 2 points
x ∈ {(0,−1/2), (1/2, 0)} (in blue), while taking values between −1 and +1 on X.

Figure 3. Degree 6 polynomial certificate for the sphere example,
with 3 points (red) in the support of the positive part, and 3 points
(blue) in the support of the negative part of the optimal measure.

1.3.3. Localization of points on the sphere. Recent extensions of Super Resolution
to spike deconvolution on the 2-sphere from spherical harmonic measurements has
been investigated in [BDF14a, BDF14b]. In these paper, the authors give a suffi-
cient condition for exact recovery using `1-minimisation and they investigate spikes
localization when the measurements are perturbed by additive noise.

From a numerical point of view, they used a relaxed version of the dual program
(bounded real lemma in dimension d = 3 and a Gram representation of the `∞-
constraint appearing in the dual). Our work naturally extends to this frame and
provides an exact formulation of the primal form.
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For sake of numerical code simplicity, we have considered polynomials on R3

restricted to the domain X given by the 2-sphere (note that one could have used
homogenous spherical harmonics instead as in [BDF14a]). We want to recover the
measure

µ := δ(1,0,0) + δ(0,1,0) + δ(0,0,1) − δ(
√

2
2 ,
√

2
2 ,0)
− δ

(
√

2
2 ,0,

√
2

2 )
− δ

(0,
√

2
2 ,
√

2
2 )

that is supported on the positive orthant just for better visualization purposes. In
LP (2.1), the ai consist of 3-variate monomials of degree up to 5, i.e. m = 56.
Solving the SDP relaxation of order k =6 on our standard PC takes less than
20 seconds, and optimality is certified from the solution of the primal moment
problem with a rank 3 moment matrix for µ+ and a rank 3 moment matrix for
µ−, from which the 6 points can be extracted using numerical linear algebra. On
Figure 3 we represent the degree 6 polynomial certifying optimality on the 2-sphere,
constructed from the solution of the dual SOS problem. Indeed we can check that
the polynomial attains the value +1 at the 3 prescribed points, it attains the value
−1 (in red), at the 3 others prescribed points (in blue), while taking values between
−1 and +1 on X.

From a theoretical point of view, the minimal separation condition appearing
in [BDF14a] requires a degree 2 polynomial. So our example satisfy the sufficient
aforementioned condition.

2. Primal and dual LP formulation

2.1. General model and notation. Let n be a positive integer. Denote by R[x]
the set of all polynomials on Rn, and for d ∈ N, Rd[x] the set of all polynomials on
Rn with degree not greater than d. Further, we use the following notation:

• X ⊂ Rn, is a given closed basic semi-algebraic set:

X := {x ∈ Rn : gj(x) ≥ 0, j = 1, . . . , nX}
where gj ∈ R[x], j = 1, . . . , nX , are given polynomials whose degrees are
denoted by dj , j = 1, . . . , nX . It is assumed that X is compact with an
algebraic certificate of compactness. For example, one of the polynomial
inequalities gj(x) ≥ 0 should be of the form:

R2 −
n∑
i=1

x2i ≥ 0 ,

for R a sufficiently large constant. Let gX := (gj)j=1,...,nX
.

• Let a = (ai)
m
i=1 be a linearly independent family of polynomials of degree

at most d on X. Notice that m ≤ (1 + d)n.
• For monomials we use the multi-index notation

xα :=

n∏
j=1

x
αj

j

for every x = (x1, . . . , xn) ∈ Rn and α = (α1, . . . , αn) ∈ Nn.
• C (X), the space of continuous functions on X, a Banach space when

equipped with the sup-norm:

‖f‖ = sup
x∈X
|f(x)| .

• R(X), the space of signed Radon measures on X, a Banach space isomet-
rically isomorphic to the topological dual C (X)∗ when equipped with the
total variation norm:

‖µ‖TV = sup
P

∑
E∈P
|µ(E)| ,
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where the supremum is taken over all partitions P of X into a finite number
of disjoint measurable subsets.

• C (X)+ ⊂ C (X) and R(X)+ ⊂ R(X) the respective positive cones of
nonnegative continuous functions on X and (nonnegative) Radon measures
on X. We use the standard notation f ≥ 0 and µ ≥ 0 for membership in
C (X)+ and R(X)+, respectively.

• To denote the integration of a function against a measure, we use the duality
bracket:

〈f, µ〉 =

∫
X

fdµ ,

for all f ∈ C (X), and µ ∈ R(X).

With the usual Jordan decomposition:

µ = µ+ − µ−
into a sum of two nonnegative Borel measures µ+, µ−, the optimization problem
(1.6) can be rewritten equivalently as a linear programming (LP) problem in the
convex cone R(X)+, namely:

(2.1)

p∗ = inf 〈1, µ+〉+ 〈1, µ−〉
s.t. 〈ai, µ+〉 − 〈ai, µ−〉 = bi, i = 1, . . . ,m

µ+ ∈ R(X)+
µ− ∈ R(X)+.

If a = (ai)i=1,...,m ∈ C (X)m and b = (bi)i=1,...,m ∈ Rm, problem (2.1) is the dual
of the following LP problem in the convex cone C (X)+:

(2.2)
d∗ = sup b>u

s.t. z+(x) := 1 + a>(x)u ∈ C (X)+
z−(x) := 1− a>(x)u ∈ C (X)+

where the maximization is w.r.t. u = (ui)i=1,...,m ∈ Rm. Remark that LP problem
(2.2) can be also written as:

d∗ = sup b>u
s.t. ‖a>(x)u‖∞ ≤ 1.

Lemma 1. There is no duality gap between primal LP (2.1) and dual LP (2.2), i.e.
p∗ = d∗.

Proof: Define the vector r(µ+, µ−) ∈ Rm+1 by:

r(µ+, µ−) := (〈1, µ+〉+ 〈1, µ−〉, 〈a1, µ+〉 − 〈a1, µ−〉, . . . 〈am, µ+〉 − 〈am, µ−〉)
and the set

R := {r(µ+, µ−) : (µ+, µ−) ∈ R(X)+ ×R(X)+} ⊂ Rm+1.

By [Bar02, Theorem 7.2], p∗ = d∗ provided that p∗ is finite and R is closed. Finite-
ness of p∗ follows from Assumption 1.7 and nonnegativity of the objective function
〈1, µ+〉+ 〈1, µ−〉. To prove that R is closed we have to show that for any sequence
(µn+, µ

n
−)n∈N ∈ R(X)+ × R(X)+ such that r(µn+, µ

n
−) → s ∈ Rm+1 as n → ∞,

one has s = r(µ, ν) for some finite measures µ, ν ∈ R(X)+. Since the supports of
all the measures are contained in a compact set, and since 〈1, µn+〉 + 〈1, µn−〉 → s0
all measures µn+, µ

n
− are uniformly bounded. Therefore, from the weak-* compact-

ness (and weak-* sequential compactness) of the unit ball (Banach-Alaoglu’s The-
orem), there is a subsequence (µnk

+ , µnk
− )k∈N that converges weakly-* to an element

(µ, ν) ∈ R(X)+ ×R(X)+. In particular, as all ai are continuous,

lim
k→∞

r(µnk
+ , µnk

− ) = r(µ, ν),

which proves that R is closed. �
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Lemma 2. For the dual LP problem (2.2) the supremum is attained.

Proof: The feasibility set

U := {u ∈ Rm : ‖a>(x)u‖∞ ≤ 1}
of the LP problem (2.2) is a closed convex subset of a finite-dimensional Euclidean
space, and it contains the origin. Since the objective function in LP (2.2) is con-
tinuous on U , the optimum is attained if U is bounded. Suppose that U is not
bounded. Then there exists a sequence (un)n∈N ⊂ U such that ‖un‖ → ∞ as
n → ∞. Write un = λnvn, with ‖vn‖ = 1. Notice that 0 < λn → ∞ and vn ∈ U
because 0 ∈ U and U is convex. Then

‖a>(x)un‖∞ = ‖a>(x)λnvn‖∞ = = λn‖a>(x)vn‖∞ ≤ 1,

so that ‖a>(x)vn‖∞ ≤ λ−1n → 0 as n → ∞. Since ‖vn‖ = 1, there exists a
subsequence nk and v with ‖v‖ = 1 such that vnk

→ v as k →∞ and ‖a>(x)v‖∞ =
0. By linear independence of a, this implies that v = 0, a contradiction. �

As a consequence of strong duality of Lemma 1, for any optimal primal-dual pair
(µ, u) we have the complementarity conditions

〈z+, µ+〉 = 0, 〈z−, µ−〉 = 0

implying jointly with Lemma 2 that

spt µ+ ⊂ {x ∈ X : a>(x)u = 1 }
and

spt µ− ⊂ {x ∈ X : a>(x)u = −1 }
for some continuous function x 7→ a>(x)u, and where sptµ denotes the support of
µ, that is, the smallest closed set S ⊂ Rn such that µ(Rn \ S) = 0.

Lemma 3. Problem (1.6) has an optimal atomic measure supported on at most
2(m+ 1) points.

Proof: Let µ+ be a nonnegative measure solving problem (2.1) and let b+i :=
〈ai, µ+〉, with a0 := 1, i = 0, 1, . . . ,m. If b+ = 0 then µ+ = 0 is trivially atomic
(with no atoms), so assume b+0 6= 0, and consider the probability measure µ̄+ :=
µ+/b+0 which satisfies the m equality constraints 〈ai, µ̄+〉 = b̄+i := b+i/b+0, i =
1, . . . ,m. From [Bar02, Proposition 9.4] there exists a probability measure µ̂+

satisfying the same equality constraints 〈ai, µ̂+〉 = b̄+i and which is supported on
(at most) m+1 points of X. The same reasoning can be applied to any nonnegative
measure µ− solving problem (2.1), which has a discrete counterpart µ̂− supported
on (at most) m + 1 points of X. The result follows by considering the union of
these two discrete supports, which consists of (at most) 2(m+ 1) points of X. �

3. Primal and dual SDP formulation

Problem (2.1) is an instance of a generalized moment problem. As such it can be
solved by a converging hierarchy of finite-dimensional primal-dual semidefinite pro-
gramming (SDP) problems, as described comprehensively in [Las10]. In the sequel,
we extract the key instrumental ingredients to the construction of the hierarchy.

3.1. Primal moment SDP. Recall from paragraph 2.1 that

X := {x ∈ Rn : gj(x) ≥ 0, j = 1, . . . , nX}
is a basic semi-algebraic set with a straighforward certificate of compactness, and let
gX := (gj)j=1,...,nX

denote its defining polynomials. Given a measure µ ∈ R+(X),
the real number

(3.1) yα := 〈xα, µ〉
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is called its moment of order α ∈ Nn. Conversely, given a real valued sequence
y := (yα)α∈Nn , if identity (3.1) holds for all α ∈ Nn, we say that y has a representing
measure µ ∈ R+(X). Equivalently, sequence y belongs to the infinite-dimensional
moment cone

M (X) := {(yα)α∈Nn : yα = 〈xα, µ〉, µ ∈ R(X)+}.
In the sequel we describe a procedure to approximate this convex cone.

Given k ∈ N, let R[x]k denote the space of real polynomials of degree at most k.
Let us identify a polynomial p(x) =

∑
α pαx

α ∈ R[x]k with its vector p of coefficients
in the monomial basis. Define the Riesz functional `y as the linear functional acting
on polynomials as follows: p ∈ R[x]k 7→ `y(p) =

∑
α pαyα = p>y ∈ R. Note that if

sequence y has a representing measure µ, then `y(p) = 〈p, µ〉. Define the moment
matrix of order k as the Gram matrix of the quadratic form p ∈ R[x]k 7→ `y(p2) ∈ R,
i.e. the matrix Mk(y) such that `y(p2) = p>Mk(y)p. By construction this matrix is
symmetric and linear in y. Given a polynomial g ∈ R[x], define its localizing matrix
of order k as the Gram matrix of the quadratic form p ∈ R[x]k 7→ `y(gp2) ∈ R, i.e.
the matrix Mk(g y) such that `y(gp2) = p>Mk(g y)p. By construction this matrix
is symmetric and linear in y. For j = 1, . . . , nX , let kj denote the smallest integer
not less than half the degree of polynomial gj , and let kX := max{1, k1, . . . , knX

}.
With these notations, and for k ≥ kX , define the finite-dimensional moment cone

Mk(gX) := {(yα)|α|≤2k : Mk(y) � 0, Mk−kj (gj y) � 0, j = 1, . . . , nX}
where � 0 means positive semidefinite.

Let y+ resp. y− denote the sequence of moments

y+α :=

∫
xαµ+(dx), y−α :=

∫
xαµ−(dx)

of µ+ (resp. µ−), indexed by α ∈ Nn. Primal measure LP (2.1) can be written as
a primal moment LP:

p∗ = min y+0 + y−0
s.t. A(y+, y−) = b

y+ ∈M (X)
y− ∈M (X)

where the linear system of equations A(y,y−) = b models the linear moment con-
straints. The moment relaxation of order k ≥ max{kX , d} of the primal moment
LP then reads:

(3.2)

p∗k = min y+0 + y−0
s.t. A(y+, y−) = b

y+ ∈Mk(gX)
y− ∈Mk(gX)

where the minimization is w.r.t. a vector (y+, y−) of moments of degree at most
2k. For fixed k, problem (3.2) is a finite-dimensional linear programming problem
in the convex cone of positive semidefinite matrices, i.e. an SDP problem. When
k varies, the number of moments, as well as the size of the moment and localizing
matrices in problem (3.2) are binomial coefficients growing in O(kn).

It can be shown that (p∗k) is a monotonically nondecreasing converging sequence
of lower bounds on p∗, i.e. p∗k+1 ≥ p∗k and limk→∞ p∗k = p∗. However, in the context
of solving LP (2.1), a more relevant result is the following:

Theorem 1. For a given relaxation order k ≥ max{d, kX}, let (y∗+, y
∗
−) denote the

solution of the moment SDP (3.2). If

(3.3) rankMk−kX (y∗+) = rankMk(y∗+) and rankMk−kX (y∗−) = rankMk(y∗−)



12 Y. DE CASTRO, F. GAMBOA, D. HENRION, AND J.-B. LASSERRE

then p∗k = p∗ and LP (2.1) has an optimal solution (µ∗+, µ
∗
−) with µ∗+ (resp. µ∗−)

atomic supported at r+ := rankMk(y∗+), (resp. r− := rankMk(y∗−)) points.

Proof: By [Las10, Theorem 3.11], y∗+ (resp. y∗−) is the vector of moments up
to order 2k, of a measure µ∗+ (resp. µ∗−) supported on rank Mk(y∗+) points (resp.
rank Mk(y∗−)) points of X. Therefore (µ∗+, µ

∗
−) is a feasible solution of (2.1) with

value pk ≤ p∗, which proves that (µ∗+, µ
∗
−) is an optimal solution of (2.1) and

pk = p∗. �

Given a moment matrix Mk(y∗+) satisfying the rank constraint of Theorem 1,
there is a numerical linear algebra algorithm that extracts the r+ points of the sup-
port of the corresponding atomic measure µ∗+, and similarly for µ∗−. The algorithm
is described e.g. in [Las10, Section 4.3] and it is implemented in the Matlab toolbox
GloptiPoly 3.

A certificate of optimality can be obtained by solving the dual problem to primal
SDP problem (3.2), and this is described next.

3.2. Dual SOS SDP. For a given integer k, let Σ[x]k ⊂ R[x]2k denote the space
of SOS (sums of squares) polynomials of degree at most 2k. If p ∈ Σ[x]k this means
that there exists qj ∈ R[x]k, j = 1, . . . , np, such that p =

∑np

j=1 q
2
j . Let

P(X) := {p ∈ R[x] : p(x) ≥ 0, ∀x ∈ X}
denote the infinite-dimensional cone of nonnegative polynomials on X, and for
k ≥ kX , define the finite-dimensional SOS cone, also called quadratic module

Pk(gX) := {p0 +

nX∑
j=1

gjpj , pj ∈ Σ[x]k−kj , j = 0, 1, . . . , nX} ⊂ R[x]2k.

Under the above assumptions on the polynomial family gX defining X, from Puti-
nar’s theorem, see e.g. [Las10, Theorems 2.14 and 3.8], it holds that P(X)∩R[x]κ
is the closure of (∪k≥kXPk(gX)) ∩R[x]κ for all κ ≥ kX . Observe also that M (X)
(resp. Mk(gX)) is the dual cone to P(X) (resp. Pk(gX)). Whereas testing
whether a given polynomial belongs to P(X) is a difficult task, testing whether
a given polynomial belongs to Pk(gX), for a fixed k, amounts to solving an SDP
problem.

Dual continuous function LP (2.2) can be written as a positive polynomial LP

d∗ = max b>u
s.t. 1 + a>(x)u ∈P(X)

1− a>(x)u ∈P(X)

and its SOS strengthening of order k ≥ kX reads:

(3.4)
d∗k = max b>u

s.t. 1 + a>(x)u ∈Pk(gX)
1− a>(x)u ∈Pk(gX)

where the maximization is w.r.t. a vector u ∈ Rm. It turns out that this is SOS
problem (3.4) is an SDP problem dual to the moment problem (3.2):

Lemma 4. There is no duality gap between SDP problems (3.2) and (3.4), i.e.
p∗k = d∗k, and both (3.2) and (3.4) have an optimal solution.

Proof: We first show that (3.2) has an optimal solution. Recall that one of con-
straints gj(x) ≥ 0 that define X states that M − ‖x‖2 ≥ 0 for some M > 1.
From the constraint Mk−kj (gjy+) � 0 one deduces that `y+(M − x2i ) ≥ 0, and

`y+(Mxti−x
t+2
i ) ≥ 0 for every t = 1, . . . , 2k−2. Hence `y+(x2ki ) ≤Mky+0 for every

i = 1, . . . , n. With similar arguments, `y−(x2ki ) ≤Mky−0 for every i = 1, . . . , n. By

[Las10, Proposition 3.6] |y+α| ≤Mky+0 and |y−α| ≤Mky−0 for all α ∈ Nn2k. Next,
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in a minimizing sequence (ys+, y
s
−), s ∈ N, of (3.2) one has ys+0+ys−0 ≤ y1+0+y1−0 =: ρ

for all s, and so |ys+α| ≤ Mkρ and |ys−α| ≤ Mkρ for all α ∈ Nn2k, and all s = 1, . . ..
From this we deduce that there is a subsequence (yst+ , y

st
− ), t ∈ N, that converges

to some (y∗+, y
∗
−) as t → ∞, with value y∗+0 + y∗−0 = p∗k. In addition by a simple

continuity argument, Mk(y∗+) � 0 and Mk−kj (gj y
∗
+) � 0, j = 1, . . . , nX . Similarly

Mk(y∗−) � 0 and Mk−kj (gj y
∗
−) � 0, j = 1, . . . , nX , which proves that (y∗+, y

∗
−) is

an optimal solution of (3.2).
Next, the set of optimal solutions y∗ := {(y∗+, y∗−)} of (3.2) is compact. This

follows from |y∗+α| ≤Mky∗+0 ≤Mkp∗k and |y∗−α| ≤Mky∗−0 ≤Mkp∗k for all α ∈ Nn2k.
And so every sequence in y∗ has a converging subsequence. From [Bar02, Chapter
IV. Theorem 7.2] one also deduces that there is no duality gap between (3.2) and
(3.4).

It remains to prove that (3.4) has an optimal solution. Consider a maximizing
sequence (ut)t∈N, with bTut → p∗k = p∗ as t→∞. By feasibility in (3.4), one has
‖a(x)Tut‖∞ ≤ 1 for all t and therefore (ut) ⊂ U := {u ∈ Rn : ‖a(x)Tu‖∞ ≤ 1}
and U is compact (see the proof of Lemma 2). Therefore there exists u∗ ∈ U and a
subsequence (t`)`∈N such that ut` → u∗ ∈ U as ` → ∞. In particular bTu∗ = p∗.
Moreover, since by Lemma 8 in the Appendix the convex cone Pk(gX) is closed,
1−a(x)Tut` → 1−a(x)Tu∗ ∈Pk(gX), which proves that u∗ is an optimal solution
of (3.4). �

Assume that the rank conditions of Theorem 1 is satisfied at some relaxation
order k, and let (µ∗+, µ

∗
−) denote the atomic measures optimal for problem (2.1),

obtained from the solution of the primal SDP problem (3.2). Let u∗ denote an
optimal solution of the dual SDP problem (3.4). The duality result of Lemma 4
implies that

Supp µ∗+ ⊂ {x ∈ X : a>(x)u∗ = 1}
and

Supp µ∗− ⊂ {x ∈ X : a>(x)u∗ = −1}

so that the polynomial a>(x)u∗ can be used as a certificate of optimality. We
formulate this in the following dual to Theorem 1.

Lemma 5. Assume that the rank conditions (3.3) of Theorem 1 hold. Let us denote
by u∗ the optimal solution of SOS SDP (3.4). Then the polynomial z∗+(x) :=

1 + a>(x)u∗ vanishes at the r+ points of the support of µ∗+, and the polynomial

z∗−(x) := 1− a>(x)u∗ vanishes at the r− points of the support of µ∗−.

Proof: Let us denote by {xk+}k=1,...,r+ ⊂ X the points of the support of the optimal
measure µ∗+, computed from the moments y∗+ solving optimally moment SDP (3.2).
By complementarity of the solutions of primal-dual SDP (3.2) and (3.4), it holds
〈z∗+, µ∗−〉 = 0 and hence 〈z∗+, δxk

+
〉 = z∗+(xk+) = 0 for each k = 1, . . . , r+. The proof

is similar for z∗− and µ∗−. �

4. Discussion

We would like to point out that the developments in this paper were inspired by a
previous work on optimal control for linear systems formulated as a primal LP (2.1)
on measures and a dual LP on continuous functions (2.2), and solved numerically
with primal-dual moment-SOS SDP hierarchies [CAHL13, CAHL14]. Formulating
optimal control problems as moment problems was a classical research topic in the
1960s, where optimal control laws were sought in measures spaces (completions of
Lebesgue spaces) to allow for oscillations and concentrations, see e.g. [Kra68] or the
overview in [Fat99, Section III]. In the case of linear optimal control of an ordinary
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differential equation of order n, it was proved in [Neu64] that there is always an
n-atomic optimal measure solving problem (2.1).

In practice, Theorem 1 should be used as follows:

1 Let k = max{d, kX}.
2 Solve SDP problem (3.2) and its dual (3.4) with a primal-dual algorithm.
3 If the rank condition (3.3) of Theorem 1 is satisfied, then extract the mea-

sure from the solution of (3.2) and the polynomial certificate from the
solution of (3.4). Otherwise, let k = k + 1, and go to 1.

We conjecture that if the data a,b in problem (2.1) are generic, then there is
a finite value of k for which the rank condition of Theorem 1 is satisfied. The
rationale behind this assertion follows from a result by Nie [Nie14] on generic fi-
nite convergence for the moment-SOS SDP hierarchy for polynomial optimization
over compact basic semi-algebraic sets. Translated in the present context for a
fixed family of data a, results in [Nie14] yield that there is a set of polynomials
{h1, . . . , hL} ⊂ R[u], such that, given a feasible solution u of (2.2), if h`(u) 6= 0 for
all ` = 1, . . . , L, then indeed

1 + aT (x)u = p10(x) +

nX∑
j=1

p1j (x) gj(x), x ∈ Rn,

and

1− aT (x)u = p20(x) +

nX∑
j=1

p2j (x) gj(x), x ∈ Rn,

for some SOS polynomials pkj , k = 1, 2 and j = 1, . . . , nX . So if the optimal solution
u∗ of (2.2) satisfies h`(u

∗) 6= 0, ` = 1, . . . , L, then d∗ = d∗k for some index k (i.e.
finite convergence takes place). Similarly, by [Nie13] the rank-condition (3.3) of
Theorem 1 also holds generically for polynomial optimization (which however is
a context different from the present context). Put differently, finite convergence
would not hold only if every optimal solution u of (2.2) would be a zero of some
polynomial of the family {h1, . . . , hL} ⊂ R[u]. But so far we have not proved that
at least one optimal solution u∗ of (2.2) is not a zero of some of the polynomials
h`, at least for generic b.

Of course, finite convergence occurs for trigonometric polynomials onX = [0, 2π],
which follows from the Fejér-Riesz theorem and this was exploited in the landmark
paper [CFG14]. Similarly, but apparently not so well-known, the Fejér-Riesz theo-
rem also holds in dimension n = 2. Indeed it follows from Corollary 3.4 in [Sch06]
that every non-negative bivariate trigonometric polynomial can be written as a sum
of squares of trigonometric polynomials2. So again for trigonometric polynomials
on X = [0, 2π]2, finite convergence of the hierarchy (3.4) takes place, i.e., d∗k = d∗.
Note however that in contrast to the one-dimensional case, there is no explicit up-
per bound on the degrees of the sum of squares which are required, so that even
in the two-dimensional Fourier case we do not have an a priori estimates on the
smallest value of k for which d∗k = d∗ an for which we can guarantee that the rank
condition of Theorem 1 is satisfied.

Generally speaking, even if our genericity conjecture is true, we do not have a
priori estimates on the smallest value of k for which Theorem 1 holds. As men-
tioned above, this also true even in the two-dimensional case on [0, 2π]2 where finite
convergence is guaranteed in all cases.

2We are grateful to Markus Schweighofer for providing this reference.
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5. Appendix

We first recall some standard results of convex analysis.

Lemma 6. ([FK94, Corollary I.1.3]) Let C ⊂ Rn be a closed convex cone with dual
C∗ = {y : 〈x, y〉 ≥ 0, ∀x ∈ C}. Then int C∗ 6= ∅ ⇔ C ∩ (−C) = {0}.

Lemma 7. ([FK94, Corollary I.1.6]) Let C ⊂ Rn be a closed convex cone whose
dual C∗ has nonempty interior. Then for all y ∈ intC∗, the set {x ∈ C : 〈x, y〉 ≤ 1}
is compact.

Lemma 8. The convex cone Pk(gX) is closed.

Proof: Let Sn+ be the convex cone of real symmetric matrices of size n that are
positive semidefinite. Let Nnk be the set of n-dimensional integer vectors α such
that

∑n
i=1 αi ≤ k and let vk(x) := (xα)α∈Nn

k
be a vector of monomials of degree up

to k. Next let vk(x) vk(x)T =
∑
α∈Nn

2k
xαA0α and

vk−vj (x) vk−vj (x)T gj(x) =
∑
α∈Nn

2k

xαAjα, j = 1, . . . , nX ,

for some appropriate real symmetric matrices Ajα.
Consider a sequence (qt)t∈N ⊂ Pk(gX) such that qt → q ∈ R[x]2k as t → ∞.

That is

qt(x) = p0t(x) +

nX∑
j=1

pjt(x) gj(x), ∀x ∈ Rn,

for some pjt ∈ Σ[x]k−vj , j = 0, . . . , nX , for all t ∈ N. More precisely, coefficient-wise

(5.1) qtα = 〈Q0t, A0α〉+

nX∑
j=1

〈Qjt, Ajα〉, ∀α ∈ Nn2k,

for some appropriate matrices Qjt ∈ S
k−vj
+ . Let y = (yα)α∈Nn

2k
be the moments

yα :=
∫
X
xαdx of the measure uniformly supported on X. Observe that since X

has nonempty interior, ∫
X

p(x) dx > 0 ∀0 6= p ∈ Σ[x]k,

and ∫
X

p(x) gj(x) dx > 0 ∀0 6= p ∈ Σ[x]k−vj , j = 1, . . . , nX .

Put differently Mk(y) � 0 and Mk−vj (gj y) � 0, j = 1, . . . , nX .
The convergence qt → q implies 〈qt, y〉 → 〈q, y〉 as t → ∞. Hence there is some

η such that η ≥ 〈qt, y〉 for all t ∈ N. This in turn implies

η ≥ 〈qt, y〉 = 〈p0t, y〉+

nX∑
j=1

〈pjt gj , y〉

= 〈Q0t,Mk(y)〉+

nX∑
j=1

〈Qjt,Mk−vj (gj y)〉.(5.2)

Therefore

sup
t
〈Q0t,Mk(y)〉 ≤ η, sup

t
〈Qjt,Mk−vj (gj y)〉 ≤ η, j = 1, . . . , nX .

As 0 ≺ Mk(y) ∈ int(Sk+)∗, and 0 ≺ Mk−vj (gj y) ∈ int(Sk−vj+ )∗, j = 1, . . . , nX ,

one may invoke Lemma 7 and conclude that the sequences (Q0t)t∈N ⊂ Sk+ and
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(Qjt)t∈N ⊂ S
k−vj
+ are norm-bounded. Therefore there is a subsequence (t`)`∈N and

matrices Q0 ∈ Sk+ and Qj ∈ S
k−vj
+ , j = 1, . . . , nX , such that

Q0t` → Q0, Qjt` → Qj , j = 1, . . . , nX

as ` → ∞. Taking the limit for the subsequences (qt`α)`∈N and (Qjt`)`∈N in (5.1)
yields coefficient-wise

qα = 〈Q0, A0α〉+

nX∑
j=1

〈Qj , Ajα〉, ∀α ∈ Nn2k,

which proves that q ∈Pk(gX), the desired result. �
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