Alternating Euler sums at the negative integers. - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 2009

Alternating Euler sums at the negative integers.

Résumé

We study three special Dirichlet series, two of them alternating, related to the Riemann zeta-function. These series are shown to have extensions to the entire complex plane and we find their values at the negative integers (or residues at poles). These values are given in terms of Bernoulli and Euler numbers.
Fichier principal
Vignette du fichier
32Article2.pdf (153.24 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt

Dates et versions

hal-01112352 , version 1 (02-02-2015)

Identifiants

Citer

Khristo Boyadzhiev, H. Gopalkrishna Gadiyar, R Padma. Alternating Euler sums at the negative integers.. Hardy-Ramanujan Journal, 2009, Volume 32 - 2009, pp.24-37. ⟨10.46298/hrj.2009.165⟩. ⟨hal-01112352⟩
81 Consultations
902 Téléchargements

Altmetric

Partager

More