Towards a Model for Predicting Intention in 3D Moving-Target Selection Tasks
Résumé
Novel interaction techniques have been developed to address the difficulties of selecting moving targets. However, similar to their static-target counterparts, these techniques may suffer from clutter and overlap, which can be addressed by predicting intended targets. Unfortunately, current predictive techniques are tailored towards static-target selection. Thus, a novel approach for predicting user intention in moving-target selection tasks using decision-trees constructed with the initial physical states of both the user and the targets is proposed. This approach is verified in a virtual reality application in which users must choose, and select between different moving targets. With two targets, this model is able to predict user choice with approximately 71% accuracy, which is significantly better than both chance and a frequentist approach.
Format | typeAnnex_author |
---|
Loading...