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Abstract. Novel interaction techniques have been developed to address
the difficulties of selecting moving targets. However, similar to their
static-target counterparts, these techniques may suffer from clutter and
overlap, which can be addressed by predicting intended targets. Unfor-
tunately, current predictive techniques are tailored towards static-target
selection. Thus, a novel approach for predicting user intention in moving-
target selection tasks using decision-trees constructed with the initial
physical states of both the user and the targets is proposed. This ap-
proach is verified in a virtual reality application in which users must
choose, and select between different moving targets. With two targets,
this model is able to predict user choice with approximately 71% ac-
curacy, which is significantly better than both chance and a frequentist
approach.

Keywords: User intention, prediction, Fitts’ Law, moving-target selec-
tion, perceived difficulty, decision trees, virtual reality.

1 Introduction

Selection of moving targets is a common task in human–computer interaction
(HCI) and more specifically in virtual reality (VR). Unfortunately, most of the
HCI studies on selection, based on Fitts’ Law [4], have focused on static targets
(for a compendium, see, for example [6]). Recently, however, new performance
models [1] and interaction techniques [8] have been proposed to address the
specificities and difficulties of moving-target selection.

Novel moving-target selection techniques, such as Comet and Ghost [8], en-
hance pointing by expanding selectable targets or creating easier-to-reach prox-
ies for each target, respectively. Nevertheless, these techniques may suffer from
clutter and overlap when the number of selectable objects is increased [8]. A pos-
sible solution to these limitations, also present in static selection, is to predict



the intended targets [8,15]. Unfortunately, to the authors’ knowledge, current
predictive techniques are tailored towards static-target selection.

Current static-target prediction techniques are based on the trajectory and ve-
locity profiles of the pointer [13,17,21,15]. The peak accuracy rates for prediction
using these techniques require a wide window of user input—at least 80% of the
pointing movement—but some of them are intended to predict endpoints [13,21],
rather than intended targets [17,15].

In contrast with static-target prediction techniques, this study explores the
feasibility of predicting intended moving targets based only on the initial physical
states of both the user and the targets, namely initial hand position, target
position and target size, in a 3D selection task. To exclude factors, other than
size and position, that may bias these predictions, the targets in the analyzed
3D task are kept identical in every other aspect, such as color and speed.

1.1 Identical Choices, Mental Effort and Fitts’ Index of Difficulty

In the mid 90’s, Christenfeld [3] conducted a series of real-life studies in which
he found the middle position to be up to 75% predictive of people’s choices
when selecting among otherwise identical options, such as items from the same
product in a supermarket or restroom stalls. In the same series of studies, he
also explored route selection and found participants tended to choose based
on the initial segment of the route and not on the optimal route—this was
posteriorly named the Initial Segment Strategy [2]. Christenfeld suggested that
these outcomes are consistent with the principle of minimizing mental effort,
although he did not formalize this notion.

From a human-performance standpoint, selecting the middle choice among
identical objects minimizes Fitts’ Law’s Index of Difficulty [4] (ID, see Equa-
tion 1 for its so-called Shannon Formulation [14]), since middle objects have the
smallest distance (D) relative to the person and thus the smallest ID. Recent re-
search also suggests that Fitts’ ID can be related to perceived difficulty [5,12,20].
Thus, in Christenfeld’s studies, people may have minimized their perceived effort
by choosing the objects with the minimum ID.

ID = log2(D/W + 1) (1)

This research explores the hypothesis that this relationship between ID and
perceived effort can be used to predict user intention in 3D selection tasks. To
do so, however, the influence of target distance (D) and width (W ) on such
predictions must be evaluated; as opposed to distance only, the common factor
in Christenfeld’s item selection studies. More importantly, it is possible that the
correlation between ID and perceived effort will decrease with the addition of
target motion, since the correlation between ID and selection time is reduced
in moving-target selection relative to static selection [10]. Regardless, we hy-
pothesize that ID, or another function of target size and initial distance may
be predictive of user intention in moving-target selection tasks. Additionally, in
accordance with the Initial Segment Strategy, we hypothesize that in the case of



a sequential selection task, the first target’s ID will be more predictive of user
intention than the sum of IDs in the sequence.

2 Methods

2.1 Participants

Twenty-six unpaid participants, from the city of Chalon-sur-Saône, France aged
23 to 47, participated in the study. There were eighteen males and eight females;
only two participants were left-handed.

2.2 Apparatus

The experiment was developed in VR JuggLua [18], a Lua wrapper for VR
Juggler and OpenSceneGraph. The application was deployed in the “MoVE”,
a 4-surface CAVE-like virtual environment with three walls and a floor. The
3×3×2.67 m environment was projected using passive, Infitec stereo [11] at
1160×1050 pixels per face. Four infrared ART cameras tracked the pose (posi-
tion, P , and orientation, Q) of each participant’s head and wand, using reflective
markers mounted on Infitec stereo glasses and an ART Flystick2, respectively.
This allowed each participant to have an adequate 3D perception and interact
with the virtual world.

2.3 Procedure

Each participant was asked to stay in the middle of the MoVE (x = 0, z = 0)
facing the front wall and was instructed to complete a series of target selection
tasks. In each trial, they were presented with a horizontal array of virtual spheres
of different sizes, starting in front of them and flying towards them in z. All of
the spheres had the same texture, scaled accordingly to the sphere’s size. Each
participant was instructed to touch each sphere by extending their arms only to
reach the spheres—as opposed to wait for the spheres with their arms already
extended. If a sphere was touched, or if it got 0.5 m past the participant’s head
in z, it disappeared. Each trial ended when the participant had touched all of
the spheres, or when the remaining spheres got past their head.

Visual and auditory feedback were used to indicate participant’s performance.
A virtual counter was placed in front of the participant at (0, 0,−5), which would
show the number of missed spheres during each block; the counter would be reset
to zero at the beginning of each block of trials. When a participant hit a sphere,
a spatialized sound would be played, co-localized with the wand position; a
different spatialized sound would be played, co-localized with the overall centroid
of the remaining spheres, when the spheres got past the participant’s head.

At each frame of the application, the elapsed time, head pose (Ph, Qh), wand
pose (Pw, Qw), sphere positions (Pi) and possible collisions between the wand
and the spheres were recorded in a log file. The experimental setup is depicted
in Fig. 1.



Fig. 1. Experimental setup with an array two spheres

2.4 Design

A within-subjects, factorial design was used, with two blocks of trials, each with
a different number of conditions presented in a random order. In every trial, all
of the spheres appeared 0.3 m below the participant’s head and 5 m in front of
them (Pi,y = Ph,y − 0.3, Pi,z = −5).

In the first block each trial had only one sphere, moving at a constant speed of
2.5 m/s in z. Factors were sphere radius (r1 = [0.1, 0.2]) and sphere position (left :
P1,x = 0.5, center : P1,x = 0, and right : P1,x = 0.5). Each of the six conditions
was presented to the participant in a random order until completing five trials
per condition (30 total). The first block was intended only for training, so that
users could become familiar with the environment and the task.

After completing the first block, the number of spheres was increased to two
and velocity was decremented to 1.5 m/s in z. The spheres were positioned 0.5 m
apart in x but the pair could appear offset to the right (P1,x = −0.5, P2,x = 0),
left (P1,x = −0.5, P2,x = 0), or centered (P1,x = −0.25, P2,x = 0.25) with
respect to the user (see Fig. 2). Factors were sphere radius (ri = [0.1, 0.2]) and
row position (left, center and right). Each of the 12 conditions was presented
to the participant in a random order until completing five trials per condition
(60 total).
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Fig. 2. Possible row positions—left, center and right—with respect to the user in the
two-sphere block

3 Analysis

Trials in which a participant did not touch any sphere were discarded. Based on
the initial wand position (Pw), sphere diameter (W1,W2) and initial sphere posi-
tion (P1,P2), different values were calculated, including wand-sphere distances,

D1 = |Pw − P1| (2)

D2 = |Pw − P2| (3)

wand–sphere indices of difficulty,

ID1 = log2(D1/W1 + 1) (4)

ID2 = log2(D2/W2 + 1) (5)

inter–sphere distance,
Dsph = |P2 − P1| (6)

inter–sphere indices of difficulty,

ID1,2 = log2(Dsph/W2 + 1) (7)

ID2,1 = log2(Dsph/W1 + 1) (8)

and total indices of difficulty

IDT1 = ID1 + ID1,2 (9)



IDT2 = ID2 + ID2,1 (10)

Using the Weka machine-learning suite [7], feature-sets {IDT1,IDT2}, {ID1,2,
ID2,1}, {ID1,ID2} and {D1,D2,r1,r2} were evaluated with the J48 classifier, an
open source implementation of the C4.5 decision tree algorithm [19], to predict
the first selected sphere.

The classifier chooses its decision nodes recursively, based on the feature that
yields the greatest Information Gain (I)—a measure of the diminution of entropy
(H , a measure of uncertainty) on the training set (S) when splitting it by the
values of feature (A). In this experiment, the equations for I and H are the
following:

I(S,A) = H(S)−H(S|A) (11)

H(S) = −p1 log2 p1 − p2 log2 p2 (12)

H(S|A) =
∑

vεV alues(A)

|Sv|
|S| H(Sv) (13)

where pi is the relative frequency (see Equation 14) of sphere i (sphi) within
set S and Sv corresponds to the subset obtained by splitting S with the value
v of feature A. The advantage of this classifier is that it produces easy to in-
terpret rules, choosing the simplest decision tree from the input attributes. In
this study’s scope, the decision trees allowed representation and analysis of the
possible participant strategies to solve each task. To avoid over-fitting to the ex-
perimental data, 10-fold cross validation was used on the generated tree models.

Finally, data were also analyzed using a frequentist approach, by calculating
the relative frequency of choosing either sphere:

pi = ni/N (14)

where ni corresponds to the number of trials in which sphi was chosen and N is
the total number of trials. This approach allows generating a simple, one-node
decision tree with an empty feature-set (∅) that always predicts the sphere with
the highest frequency.

4 Results

Participants showed an overall preference for the right sphere. The decision tree
generated using the frequentist approach always predicted sph2 as the selected
sphere with approximately 64% ± 2.4% accuracy, with a 95% confidence level
(see last row of Table 1).

Decision trees generated with the J48 algorithm from feature-sets 1–4 (see
Table 1) yielded approximately 71% ± 2.26% accuracy on predicting the se-
lected sphere, with a 95% confidence level, which is significantly better than



both chance and a frequentist approach. Statistically, none of the tested feature-
sets seemed to perform significantly better (or worse) than each other; however,
the generated tree for feature-set 1 is more complex than those generated for
feature-sets 2–4, making it less practical and perhaps over-fitted to the data [16]
considering that the 5 non-leaf nodes were generated from only 2 attributes.

Table 1. Accuracy and 95% confidence intervals for the evaluated feature-sets

Feature-set Tree Size Number of Leaves Accuracy 95% Confidence Interval
1 IDT1, IDT2 9 5 70.5577% ±2.27491%

2 ID1,2, ID2,1 5 3 71.2062% ±2.26003%
3 ID1, ID2 5 3 70.9468% ±2.26605%

4 D1, D2, r1, r2 5 3 71.2062% ±2.26003%

5 ∅ 1 1 63.8132% ±2.39848%

Interestingly, the fact that feature-sets 2 and 4 had the same accuracy, 95%
CIs and a similar tree configuration (3 leaves out of 5 nodes) implies that they
are equivalent. This may seem surprising, since the only relevant factors in the
inter–sphere indices of difficulty, which compose feature-set 2, are sphere diam-
eters (W1, W2)1 (see Equations 7 and 8), whereas feature-set 4 is composed
not only of sphere radii (r1,r2), but also of wand–sphere distances (D1, D2).
A closer look at the generated decision tree for feature-set 4 (Fig. 3), however,
shows that the decision tree included only sphere radii; wand-sphere distances
(D1, D2) were probably ignored by the J48 algorithm on the basis of low infor-
mation gain. Thus, it is safe to conjecture that the radii provide an equivalent
information gain not only to feature-set 2, but also to feature-set 3, since their
generated trees had similar configurations and yielded an equivalent accuracy.

The overall tendency for choosing the right sphere (sph2) first is most likely
due to the majority of the participants being right-handed; unfortunately, there
weren’t enough left-handed participants to evaluate the effects of handedness on
the generated models. According to the decision tree generated from feature-set
4 (see Fig. 3), participants would only choose sph1 first if sph2 was smaller; if
both spheres had the same radius, or if sph2 was bigger, sph2 would be selected
first.

5 Discussion

Considering that decision trees were built based only on the initial position of
the user’s wand and the initial size and position of the spheres, predictions bore
a very high accuracy. It is likely, however, that the accuracy will decrease if the
number of targets is increased, but it is expected that the accuracy will still be
better than chance.
1 Inter-sphere distances are equal for all of the trials (Dsph = 0.5), annulling their

influence on ID1,2 and ID2,1 and, thus, on feature-set 2.
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Fig. 3. Decision tree for feature-set 4, suggesting that participants based their decisions
only on sphere size, with a preference for the right sphere. Leaves represent prediction
outcomes (sph1 or sph2), while the other nodes represent tested attributes (r1 or r2).
The numbers in parenthesis within the leaves represent the total number of instances
that fall into that leaf, over the number of incorrectly predicted instances among these
instances.

Considering that the decision tree for feature-set 4 consisted only of radii,
quantities from which every other feature-set is derived (see Equations 4–10)
and apparently equivalent in terms of information gain to the features in other
feature-sets (see the results section), suggests that size is more predictive of
intended targets than every measure of Fitts’ ID evaluated. This may be due to
the fact that the spheres get closer to the user throughout each trial, eventually
annulling the z -component of the target’s distance, this corroborates Jagacinski’s
findings on 1D selection times on moving targets [10]. The fact that absolute
horizontal sphere positions (Pi,x) did not affect user choices may suggest that
users prepared their hands horizontally, while waiting for the target, or that it
was more comfortable for them to reach for the right sphere first, followed by
the left sphere, which seems reasonable considering that most participants were
right handed.

In any case, this result suggests that participants did not have an optimal
global strategy to execute their reaching tasks. Yet, this does not imply that
participants optimized the initial segment either, at least as hypothesized in
terms of Fitts’ ID.

6 Conclusion and Future Work

The feasibility of predicting user intention in a very simple moving-target selec-
tion task was demonstrated. This approach revealed the practicality and power
of using decision trees to predict user intention. Although Fitts’ ID served as a



good predictor of intended target selection, sphere radius seemed to yield equiva-
lent accuracy. This suggests a very basic strategy from the users in which distance
does not play an important role for choosing targets. Because the targets were
moving and there was some waiting time while the target arrived, it is possible
that users prepared the starting position of their wands prior to executing the
pointing task.

Future work should include a greater number of spheres with different vertical
positions, as well as different movement directions. Beyond size, distance and
movement, this approach could be extended to consider other factors such as
target semantics, if any, as well as user behaviors and gestures. The potential
of using other “indices of difficulty,” formulated specifically for moving-target
selection [1,9,10], to predict user intention should also be explored. Finally, it
should also be possible to refine decision trees in real time, to adapt the generated
models to each user.
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