Notes on the Riemann zeta Function-III
Résumé
For a good Dirichlet series $F(s)$ (see Definition in \S1) which is a quotient of some products of the translates of the Riemann zeta-function, we prove that there are infinitely many poles $p_1+ip_2$ in $\Im (s)>C$ for every fixed $C>0$. Also, we study the gaps between the ordinates of the consecutive poles of $F(s)$.
Origine | Accord explicite pour ce dépôt |
---|
Loading...