Notes on the Riemann zeta Function-III - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 1999

Notes on the Riemann zeta Function-III

Résumé

For a good Dirichlet series $F(s)$ (see Definition in \S1) which is a quotient of some products of the translates of the Riemann zeta-function, we prove that there are infinitely many poles $p_1+ip_2$ in $\Im (s)>C$ for every fixed $C>0$. Also, we study the gaps between the ordinates of the consecutive poles of $F(s)$.
Fichier principal
Vignette du fichier
22Article3.pdf (224.95 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-01109602 , version 1 (26-01-2015)

Identifiants

Citer

R Balasubramanian, K Ramachandra, A Sankaranarayanan, K Srinivas. Notes on the Riemann zeta Function-III. Hardy-Ramanujan Journal, 1999, Volume 22 - 1999 (3), pp.23-33. ⟨10.46298/hrj.1999.139⟩. ⟨hal-01109602⟩
90 Consultations
668 Téléchargements

Altmetric

Partager

More