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NOTES ON THE RIEMANN ZETA�FUNCTION�III

BY

R�BALASUBRAMANIAN� K�RAMACHANDRA�

A�SANKARANARAYANAN and K�SRINIVAS�

Abstract� For a good Dirichlet series �see de�nition in x�	 F �s	 which is a quotient of some
products of the translates of the Riemann zeta�function� we prove that there are in�nitely

many poles p� � ip� in ��s	 � C for every �xed C � �� Also we study the gaps between the

ordinates of the consecutive poles of F �s	�

x�� INTRODUCTION� This is a continuation of the earlier paper �II 
KR� AS� with the
same title �where the stress in the �rst �ve sections was on �Explicit formula� and therefore

the conditions on F �s	 therein were very restrictive namely the condition
P� � �	 and has

relavence to x� of that paper� It includes all the results of x� there �even without assuming
RH etc etc	 and includes many more functions F �s	 as will be seen� At the same time the

result of the present paper will be sharper than those of x� of our earlier paper mentioned
above� We begin with a de�nition�

DEFINITION� A Dirichlet series

F �s	 �
�X
n��

ann
�s �s � � � it	

is said to be good if it converges in � � C� �for some positive constant C� � ���	 and there
exist positive constants C�� C�� C� such that for all x � C� there holds

max
x�n�xC�

janj � x�C�

REMARK �� Our method allows us to treat the case where a�ns and C� may depend on a

parameter T �� ��	 �see remark � below theorem �	� But we do not carry out such details�
yy

REMARK �� A Dirichlet series being good is equivalent to F �s	 satisfying the hypothesis

x� of our earlier paper�
yyReceived on ����
�
���

Mathematics Subject Classi�cation� �� M��	 �� M���
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We begin by stating a theorem which follows from the general result whose proof will

be explained in x� onwards� �Our method consists of estimates on �Ingham lines� and then
applying maximum modulus principle with a suitable kernel twice and then applying a

theorem of R�Balasubramanian and K�Ramachandra�	

THEOREM �� Let N and D be two �nite sets of complex numbers de�ned by

N 
 f��� ��� ���� �kg � D 
 f��� ��� ����� �lg

where � � k � l� l � �� �we stress here that neither the ��s nor � �s need be distinct	� Let P �s	
be any �xed Dirichlet polynomial �ie a terminating Dirichlet series	� Let F �s	 be de�ned by

F �s	 

�
P �s	

Y
��N

��s� �	


 �Y
	�D

��s� �	


��

���	

���	


 F��s	�F��s		
��

say �in an obvious sense� empty product being de�ned as �	 be a good Dirichlet series� Then

it has in�nitely many poles p� � ip� in ��s	 � C for every �xed C � �� Also for every

Y � ���� there exists a p� � p��Y 	 which lies in the interval

Y� Y � a log Y

where a � � is a constant� Further more the result is still true if we replace F �s	 by any

�nite sum of functions of the type F �s	 �for various P �s	� N and D	 provided that such a

sum is a good Dirichlet series �though the individual terms of the sum need not be	�

REMARK �� In our theorem some �or all	 of ��s��	 can be replaced by their derivatives

of bounded order�

REMARK �� Here some �or all	 of ��s��	 can be replaced by the corresponding ordinary

L�functions� At the same time some �or all	 of ��s � �	 can be replaced by derivatives of

bounded order of L�s � �	 for ordinary L�functions or those of
P�

n���a�n � b	�s where a�

and b are positive integers�

REMARK �� Here some �or all	 of ��s��	 can be replaced by L�
K�s��	 where L

�
K is any

L�function of a number �eld K of degree n�K	� At the same time some �or all	 of L�
K��s��	

or ��K��s� �	 �where ��K� are zeta�functions of ray classes of any number �eld K� of degree

n�K�		 or derivatives of these functions of any bounded order� The only condition that is
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necessary is
P

n�K�	 �Pn�K	 �in place of the condition � � k � l	� More general results

of this type will be treated in the paper IV 
RB� KR� AS� KS� mentioned above�

REMARK 	� The constants a and C are e�ective� They depend on other constants

involved namely ��s� � �s� P �s	� C�� C�� C� and C��

REMARK �� In all these problems mentioned above we may treat the localisation where

we restrict t by T � t � �T �or to a sub�interval of this	 and make ��s and � �s depend on

the parameter T �

REMARK 
� The results of this paper are self contained except where we refer to the

works whose references will be given explicitly�

x��NOTATION� The notation is standard and we follow the same notation as in the earlier
paper mentioned in the begining of the introduction�

x�� STATEMENT OF THE GENERAL RESULT� In what follows T will exceed a

large positive constant� The letters �� � and H will denote positive functions of T bounded

below by large positive constants� They are assumed to satisfy

H � o�T 	 � log log� � O�H	

and

log� � O�H	

where the two O� constants are assumed to be su ciently small�

�A	 Let F��s	 and F��s	�s � ��it	 be two Dirichlet series �which may depend on a parameter

T and we consider only the interval T � H � t � T � H	 convergent absolutely in � �
C��� ���	 and bounded there� The letter g � � will denote a large absolute constant

and we assume that F��s	 and F��s	 can be continued analytically in � � �G� where
G � g�log�	�log log�	��� Also we assume that F���	 � � as � � � and that in � � C�

the function logF��s	 is bounded�

�B	 Let

jF��s	j � �g in� � ���g�

�C	 Let F��s	 �� � in �g � � � �G and also in the same region we have
jF��s	�F��s		

��j � C�
� �� �C� � �	�

where C� is a constnat� For convenience we assume that the constant C� is bounded below

and also above�
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�D	 Let jF��s	j � exp��g� log�	�	 in � � �g� Under these conditions

THEOREM �� We have a pole p� � ip� with

T �H � p� � T �H�

provided F �s	 
 F��s	�F��s		
�� is good�

REMARK �� We can treat also the case where the coe cients of the Dirichlet series for

F �s	 depend on T and C� and the upper bound for jF �s	j in � � C� depend on T � For

simplicity we do not carry out these investigations�

REMARK �� The deduction of theorem � �and the remarks below it 	 from theorem � is

not di cult and will be left as an exercise to the reader�

The proof will be split up into a few sections for convenience� Whenever it may be

necessary we will give estimates which are uniform in g� Also we assume that for some H

satisfying the above conditions �the theorem is false and arrive at a contradition�

x	� STEP I �INGHAM LINES��

LEMMA 	��� The number of zeros of F��s	 in any t� interval of length �� contained in

f� � �g� T�H � t � T�Hg is O�g log �	 provided we exclude O�g	 number of t�intervals
of unit length at each extremity�

PROOF� The proof is essentially the same as that in 
RB� KR� page ��� �except for nota�

tion	�

LEMMA 	��� In any unit t�interval �refered to in Lemma ���	there exists a line ��Ingham

line�	 t � t� which is seperated away from all the zeros of F��s	 in the unit t�interval by an

amount greater than or equal to a positive constant times �g log�	���

PROOF� The proof follows from lemma ��� by applying pigeon�hole principle�

LEMMA 	��� If t � t� is any Ingham line for F��s	 �in any unit interval	 then

����F �
��� � it	

F��� � it	

���� � O�g��log g	�log�	�	�

uniformly in � � �g�

PROOF� The proof is essentially the same as that in 
RB� KR� pages ��� ���� �except for

notation	�
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LEMMA 	�	� If t � t� is any Ingham line for F��s	 �in any unit t�interval	 then

j logF��� � it�	j � O�g��log g	�log�	�	

and so

jF��� � it�	j�� � Exp�O�g��log g	�log�	�		�
and hence jF �� � it�	j � Exp�g���log�	�	� uniformly in � � �g�

PROOF� Follows from lemma ���� on noting our upper bound assumption for jF��s	j�

REMARK �� We take this opportunity to say that �by oversight	 the condition a� �� �
�essential in theorem � of 
RB� KR�	 is omitted there� However this condition does not a�ect

the results of the present paper�

REMARK �� So far we have not assumed the falsity of theorem ��

$From now on we do assume the falsity�

x�� STEP II �MAXIMUM MODULUS PRINCIPLE WITH A DECAYING

KERNEL�� The main object of this section is to prove that if we omit t�intervals of length

O�log log�	 on both extremities of �T �H� T �H	 then we have the estimate

F �s	 � O��
�

� 	

valid uniformly in � � �g �and hence by our assumption on F �s	� in �g � � � �G	�

LEMMA ���� Let z � x � iy be a complex variable with jxj � �
�� Then we have� �a	�

j exp��sin z	�	j � � for all y

and

�b	� If jyj � �� then

j exp��sin z	�	j � ��exp exp jyj	���

PROOF� See lemma ��� on page �� of 
K�R��

LEMMA ���� Let H� � H � C	g and H� � H� � C
g log log�� where C	 � � and C
 � �

are constants� Let s� � �� � it� where �g � �� � C� � �� and t� lies between T � H� and

T �H�� Then uniformly we have

jF �s�	j � O��
�

� 	�
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PROOF� Consider the function

F �s	 Exp��sin
s� s�
��g

	�	�

Apply maximum modulus principle to the rectangle bounded by the vertical lines � �

�g� � � C���� and the horizontal lines which are Ingham lines just below T �H� and just

above T �H�� Note that on the left vertical line

jF �s	j � O��	

and on the right vertical line jF �s	j � O��	� On the horizontal lines choose C
 so large that

the factor multiplying F �s	 makes the product very small� Thus jF �s�	j is as asserted� This
leads to Lemma ����

LEMMA ���� Let C� � � be a very large constant� H� � H� � gC� log�� s� � �A � it�

where A � � is a large constant and t� lies in �T �H�� T �H�	� Then

jF �s�	j � �C�AG
��

where C� � � is a constant independent of g�

PROOF Note that by our assumption on jF �s	j we have �by lemma ���	� that in the region

� � �G� T �H� � t � T �H�

the estimate jF �s	j � ��� We now apply maximum modulus principle to the function

Y �s	 � F �s	Xs�s� Exp��sin
s� s�
���G

	�	�

Accordingly jY �s�	j � jF �s�	j does not exceed the maximum modulus of jY �s	j on the
boundary of the rectangle bounded by the lines

� � �G� � � C�� t � t� � C�g log�� t � t� � C�g log�

We choose X by

��X�G
A � C�X
C�
A ie by X � �C��

� ��	�G
C����

�

where C� � � is a constant independent of g�

On the horizontal lines the contribution from F �s	Xs�s� is bounded by a constant �indepen�

dent of g	 power of �� Now the decaying factor decays like�
ExpExp

jt� t�j
���G

	��
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and so by choosing C� large the contribution of jY �s	j on the horizontal lines is negligible�
The vertical portions contribute a quantity

� �C�X
C�
A � C���

�C��AG
�� � �C�AG

��

This proves the lemma�

x�� STEP III �APPLICATION OF BALASUBRAMANIAN�RAMACHANDRA

THEOREM�� We now quote the corollary on page �� of 
KR� and explain the notation

involved therein�

BALASUBRAMANIAN�RAMACHANDRA THEOREM� Let A and C be as in the

introduction x���� � � 	 � �
�
� r � 
����A����		���� janj � nAH

r�
� � Then F �s	 �

P�
n�� an�

�s
n

is analytic in � � A � �� Let K � ��� U� � H�� �
� � Assume that K� � �HC	��AK�H �

�����A � �	�C�A
���rC�	r	
���

� � ����r�A � �		�� log logK�� and that there exist T�� T� with

� � T� � U�� H � U� � T� � H such that uniformly in � � � we have

jF �� � iT�	j� jF �� � iT�	j � K�

where F �s	 is assumed to be analytically continuable in �� � �� � � t � H	� Then

�

H

Z H

�

jF �it	j�dt � ��� ��rC�H� �
� � ���BH�� log logK�	

X
n�H���

janj��

REMARKS� We need only the special case �n � n and for this choice C � �� B � A � ��

Also we can �x 	 to be �
�
�We could have applied instead of this theorem the theorem on

page �� � due to the same two authors	 of the same reference� We wish to say that on page

�� the quantity ��C	����A
�

could be replaced by ��CA	��������A	�

In the present situation we �get back to our notation and	 wish to apply this theorem

to get a lower bound for the mean value

M �
�

�H�

Z T
H�

T�H�

jF ��A� it	j� dt

where H� �
�
��
H�� We need analytic continuation of F �s	 in � � �A � For T� and T� � of

the theorem above	 we choose the lines t � T �H� and t � T �H�� The condition on H�

required is

H� � AD�A � �������A�� log log�H��A
� Exp�O�g� log�		

i�e logH� � ����D�A log A
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where D� is a certain �absolute	 positive constant� Under this condition the lower bound for

M given by the theorem reads

M � D�

X
n�H

�
�

janj� n�A�

where D� � � is a certain �absolute	 constant� We now use the fact that F �s	 is a good

Dirichlet series� This gives us an n for which janj � n�C� where C� � �	 is independent of

A�

Thus

M � H�D�
D�A

for suitable constants D� � �� D� � � independent of A� Thus if logH � D	A logA we have

M � Exp�D
A logH	 and so

max
T�H��t�T
H�

jF ��A� it	j � Exp��
�
D
A logH	

where D	 � �� D
 � � are independent of A�

x��STEP IV �FINAL STEP� Thus combining this with Lemma ���� we have

Exp�
�

�
D
A logH	 � Exp�C�AG

�� log�	 � Exp�C�Ag
�� log log�	 � �log�	 ��D�A

by choosing g large enough� i�e� H � log�� Hence if H is greater than a�log� � log log�	

for a suitable constant a � �� we are lead to a contradiction� This proves the theorem �

completely�

x��CONDLUDING REMARKS� In a forthcoming paper 
RB� KR� AS� KS� IV with the

same title we discuss more general applications of theorem �� The utmost we can do seems

to be to take

F��s	 �
X

P �s	f��s	f��s	���fk�s	

and

F��s	 �
X

Q�s	g��s	g��s	���gl�s	

where fj and gj are zeta�functions of ray classes �or any derivatives of bounded orders of

these functions	 in any algebraic number �eld� If n�f	 denotes the degree of the number

�eld associated with the zeta function f we need some condition like

� � max
X
j�k

n�fj	 � max
X
j�l

n�gj	
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we need also the condition that the limit of F���	 as � �� is �� �Here P �s	 and Q�s	 are

�xed Dirichlet polynomials	� Also the variable s appearing of various places in the de�nition

of F �s	 may be replaced by s� � where ��s are complex constants� Also we wish to derive

handy �su cient	 conditions for F �s	 to be a good Dirichlet series in a suitable right half

plane� Before leaving this section we mention a special cae of a result from 
RB� KR� AS�

KS� IV�

THEOREM �� Let ��� ������ �k� ��� ��� ���� �l with �� � k � l	 be any purely imaginary

constants�

Assume that s � �� �� is a pole of

F �s	 � P �s	

Q
��s� �j	Q
��s� �j	

�

P �s	 being any �xed Dirichlet polynomial� Then F �s	 has in�nitely many poles in t � C for

every �xed C � �� Moreover for every Y � ��� there is a pole p � p�Y 	 � p� � ip� of F �s	

with

jp� � Y j � d log log Y

where d � � being a suitable constant�
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