On generalised Carmichael numbers. - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 1999

On generalised Carmichael numbers.

Résumé

For arbitrary integers $k\in\mathbb Z$, we investigate the set $C_k$ of the generalised Carmichael number, i.e. the natural numbers $n< \max\{1, 1-k\}$ such that the equation $a^{n+k}\equiv a \mod n$ holds for all $a\in\mathbb N$. We give a characterization of these generalised Carmichael numbers and discuss several special cases. In particular, we prove that $C_1$ is infinite and that $C_k$ is infinite, whenever $1-k>1$ is square-free. We also discuss generalised Carmichael numbers which have one or two prime factors. Finally, we consider the Jeans numbers, i.e. the set of odd numbers $n$ which satisfy the equation $a^n\equiv a \mod n$ only for $a=2$, and the corresponding generalizations. We give a stochastic argument which supports the conjecture that infinitely many Jeans numbers exist which are squares.
Fichier principal
Vignette du fichier
22Article2.pdf (363.07 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-01109575 , version 1 (26-01-2015)

Identifiants

Citer

L Halbeisen, N Hungerbühler. On generalised Carmichael numbers.. Hardy-Ramanujan Journal, 1999, Volume 22 - 1999 (2), pp.8-22. ⟨10.46298/hrj.1999.138⟩. ⟨hal-01109575⟩
194 Consultations
907 Téléchargements

Altmetric

Partager

More