A Chebychev's type of prime number theorem in a short interval II.
Résumé
In this paper, we show that $0.969\frac{y}{\log x}\leq\pi(x)-\pi(x-y)\leq1.031\frac{y}{\log x}$, where $y=x^{\theta}, \frac{6}{11}<\theta\leq 1$ with $x$ large enough. In particular, it follows that $p_{n+1}-p_n<\!\!\!0$, where $p_n$ denotes the $n$th prime.
Domaines
Mathématiques [math]Origine | Accord explicite pour ce dépôt |
---|
Loading...