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A Chebychev's Type of Prime Number Theorem in a Short

Interval-I1

Shituo Lou and Qi Yao

§ 1. INTRODUCTION.

We shall investigate the number of primes in the interval (z — y,z] for

y = zf with 1/2 < 8 < 7/12. In 1], we proved

Theorem A. Suppose z be a large number, then

‘¥ ¥y
1.0l——— > - -y} > 0.
01 Tog 7 > x(z)-x(z~y)20 99109 "
with y = 27, uniformly for .
e f L —.
20 <bs 12

Denote p(d;} the smallest prime factor of d;. We write

Se={d:d=dy---dp,de ¥, p{d;) > 2,1 <i< k}.

Let

daty= ) 1=Y1

nely 4y dp=m €S,
»4)2a,1<i<e
wEiy

Let the interval IY = (z — y,z] with

1
z'/? <yp<ze

(L1)

(1.2)

(13)

(1.4)
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and the parameter ¥ sa:izying
< zL 2t

where ¢ i8 a positive integer that will be chosen later.

Let I;,1 < j < r, be a set of integers, and I; C {2,z] and H be the
“Direct Product” of sets I;, for 1 < j < r, it means d € H if and only if
d=d---d, withd; €I;,1<j<randdel¥. (1.5)

Suppose 6 be fixed in the interval (1/2,1),y € [2°,z ezp(~(log z)'/%)].
Define the conditions (A;) and (A,) as following :

(A1). Let ¥ be an integer. If there exist some sets Hy,1 < k < &', which
are collections of direct products H’s and constants ¢z such that

Yak)= 3 cxd140 (Bgﬁ) (1.6)

nelr HeH, deH
then we call Hz,1 < k < &/, satisfy (A;).

(A2). If Hg,1 < k < K/, satisfy (A1), there exists a subset H}, and a function
E(H, z) independent of y such that

> 1 =yEu(H,2)+ O(y ezp(~(log 2)!/")), (L.7)

dEH*
uniformly for _

2° <y < z ezp(—(log 2)'/°),
then we call H,,1 < k < k', satisfy (A,). We call Hj, a ‘good set’ and call
HY = H, \ H}, a ‘bad set’, for 1 < k < k'
In 3], we proved :

THEOREM B. Let z be a sufficient large number, 8 be fized with 1/2 <
0 <1,2% <y < (1/2)z,IY = (z — y,z), ko be an integer which is dependent
on 8, and z be fized in (z'/%,21/5]. Let Hy,1 < k < K, such that (A;). If
there ezists a subset H) of Hy such that (A,), and writing H = He \ H},
then we have

*(z) — x(z — y) = yE(z,2) + R(y) + O(y ezp(~(log z)"/) (1.8)
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uniformily for .
2’ <y < ¢ exp{~(log 2)'/°),

where E(z, z) independent of y, and

Rg)= D, (- ew ) 1 (1.9)

1€k<hy. HeH} dcH

wz)-x(z-y)= 3 (1% 1Y 1400z 1) (1.10)
1<k<kg #€ESy

Theorem B is a generalization of Theorem 1 of Heath-Brown [2]. Take k' =
7,51,---,S55 as good sets and only S as a bad set ie. Hf = §1,---,Hf =
Ss,Hj = ¢; and HY = -.. = HY = ¢, H} = Sg; then Theorem B become
Theorem 1 of [2]. We are not limited that the good set S} or that the bad
get Sy should to be whole of Si. In fact, R(y) is the contribution of all bad
sets. In [1], we also proved :

THEOREM C. Suppose that 8 is fized in (1/2,1), 30 = z ezp(—(log z)7).Hx, 1

k < k', satisfy (A1) and (A3). If there exists constants ¢}, ¢}, ¢} and e} such
that

(€'1+E)Vo k11 (e” - €lyo.

e NI A 1 k'R < e 1.11

= lgi}) R (1.11)
and (¢ +¢) (" -
\&2 TEW 1 | —E)Y.

< DF e TR y) < 2—22 (1.12

v s 12;;) ) < s )

where ¢ is a small positive constant. Then

(L=~ etly (1+ el + ey

<x(z)-x(z-y) < {1.13)

log = log z
uniformly for 2° < y < yo.
We will prove the main theorem of this paper :
Theorem 1. Let y = 29,0 = 6/11 + ¢, then
0.969 1.031y-
Y ¢ x(z) - x(z - y) < 22300 (1.14)

log z logz
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Using Thecrer B and Theorem C, we need 3o fied H, and Hj. In [4] we
gave some sufficient conditions that impiy sorze xind of “direct product” be
“good set”. In § 2, we record those results from {4]. In § 3, we use those
conditions to prove that H} which will be defined in § 6 below be “good
£,

A criterion for good sets is extracted. However, the technical work need-
ed to choose good sets and to make the size of the bad sets as small as possi-
ble, is precisely the main difference between our method and Heath-Brown'’s.
The new Theorem 1 will enable us to improve the results of Heath-Brown .
and Iwaniec {5]. Moreover, we can improve (1.14) further but only at the
cost of much arduous computation.

§ 2 “GOOD SET”

Let ¢o be a constant that will be defined later on. Let Iy be an interval
[ap, bo] which contains in [1,z] and I;(1 € j < r) be a subset of interval
[aj, bj] contains in [z, z] also. Denote D = Iy - - - I, be a direct product of I;.
Let i; = log a;/log z and #; = log b;/log z and let d; = z% with i; < §; < ¥}
and 0 < j < r. For convenience, we write d = {8o,61,---,8,} € D, and a set

D ={{0,01, .8} :1/22 1~ =~ 6, =0> 6, > - > 6,}. (2.1)

For short, we denote {4;} = {6y,61,---,6:}.

Let DN IY be a set of integers, d € D NI¥ if and only if d € D and
delV.d=d withd,d €e DNIY means d =dy---d, and &' = d - - - d} with
d; = dj for 0 < j < r. We shall show the sufficient conditions for D N I¥ be
a “good set”, i.e. for a fixed z with z!/5 > z = z°, there exists a function
Ep(z,z), independent of y, which satisfies that
3 1=yEp(z,2) + O(y ezp(~log"/"z)), (2:2)
deDnlr ) ’
where Ep(z,z) and constant in “O” are uniformly for

2% < y < z ezp(~4(log z)} (loglog z)~ ).

We discuss those sequences d = {0p,61,---,6;} = {6;} in D. For such
{6;}, we define a corresponding set © of all of sequences {6,601, -+, 0y, 0p 11, -, 8r4r, }
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with 2L < 90,01 > --- 28, > log zflog = » .41 > -+ > 8,4, and
O+ 01+ -+ 8riry ==L (2.3)
By (2.3) and (2.1), we have that if r; = 0, then
o = o > 1. (2.4)

For short, write {0;} = {05,61,---,0r,8r41,--+ 0,35, } = {6;}, and {6;} €
©. Let 8] = log X/log 2,0; = log X4(j)/log z(1 < j < r) and b,4; =
log Z;/1--, #(1 £ j < r:}). Foreach {6,01,---,8;,0,41,---,0,4,, }, we define
a product of Dirichlet series :

W(s) = X()[[ X (s) ()] Zi(s) (2.5)
Jj=1 i=1
where

X(s)= Z n-?;

X<n<2X
LS UOEIED SR L oAV PT

x emg2x(
Zi(s)= ). al*|al<y

Z;<IL2Z;
Y(8)= 3wty [wl<1.

Y<t<ay

with Y = O(z®), § be a sufficient small number with § < ¢. Each {§;} ¢ D
corresponds all of W (s, {#;}')’s for which {6;} € ©. Define that W(D) is
a set of all of such W{(s, {6;}'). For short, we write W(s,{6;}') = W(s). In
[4], we proved that

Theorem A. If D satisfies one of following conditions
(1) a0 > 2%

(2) all of W(s) € W(D) such that
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o7

j RV
-
7

ry
=]

)l z%ezp(~(log z)i(loglog z :";.

P

for

1-A
BErsE
y

where A is any fized positive constant, and
T = ezp((log z)3 (loglog z)~¥).

Then (1.2) holds s.e. D is a good set.
Let 69,61, - - ,0; be positive numbers. In [4], we discussed the sequence
{86,061, --,0:} with positive number k such that

Bo+ 01+ +0k=1 (2.7)
defined a set E(f) of some {g,0;,---,0:}’s and acutely proved that (4, §
5]).

Theorem B. Let {§;} € D. For each {§;} € © define
r . i

W'(s) = X () [[ X3 ()] Zi(s)
i=1 =1

If {8} € E(8), then

/T | Wi +it) | de € 21, (2.8)

Moreover, (3.9) holds.

We now describe the set E(§).

Suppose {a1,as,0} or {a1,as, a3, c} be a complementary partial sum (it
means that each ; belongs one and only one set and their sum in a set be
o or a;) of {8g,01,---,6,} with o = 8 or o < #p/2, then

a;+ar+o=1. (2.9)

or
ai+az+a3+o0=1. (2.10)
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Later on, we only define two of a;,2,,¢ if (2.8) holds; or define ihree of
a;, a7, a3, ¢ if (2.10) holds.
Let 8 = 6/11 + £,4p = i — § + £/2 and z = £° with ¢ = £5/10. Define

D= {{f,01, --.0,}:0:>--- 28, >ef+0+---+ 6, =1} (211)
Define D;{1 < i < 7) be the subsets of D and

D} = {{f0,81,--+ .05} : 00> --- 2 69 > to/5 and 61 + 0, + 03 + 0, <
Stolg};

D; = {{06,01, - ,87}: 266/T2 8 2 61 > -+ 2 8y > 1,/5}.
D§ = {{0,01,---,05} : 260/5 > b > --- > 05 > to/5,03+84+05 > to};

1= {{00,01,---,05}:0p > 0; > 02> 63> 1 208p/11,85/3 > 04 >
to/4,

5 > 10/5,00 + 61 < 6t6/7,02+ 03 > 4 — 819,80 < B5/8 + 3t5/8};

Di = {{6o,01,---,0s} : 20/2 2 6 > 0y > 02 2> 03 > 84 > 1~
20t0/11,83 + 84 > 4 — Big, 8o/5 > 05 > £0/10,0p + 61 < 2/2};

Di = {{00,81, 04} :80/22 01> 0; > 83> 0, > 1~ 208p/11,03 +
84 > 4 — 819}

D7 = {{80,0s,---.,06} : 2t5/8 > 6 > 61 > 6, > 83 > 6, > 1 —
20t9/11,29/5 > 85 > g > t0/10,04 + 85 > £/2}

and
D" =ul_,Dj. (2.12)

In § 4, we shall prove :

Theorem 1. Suppose D' be a subset of D and
D'nD = Q, {2.13)

then D' sctisfies (1.2), i.e. D’ is a good set.
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In [4], we gave that souse sufficieut ccnditions which imply that D is a
good set. In this paper, in § 2, we recurd those conditions from 4. m § 3,
we use them to show that D % D* which is defined in (2.11) and (2.12) is
“good”.
§ 3. THEOREM 2.

We discuss those sequences d = {,6,,---,8,} = {8;} in D. For such
{6;}, we define a corresponding set © of all sequences {6y, 61,---,0r,0r41,- -+, 0rir, }
with 06 < 8,

1/2>06=0,-+1 Z"‘28r+r1 .>_01 Z'-'29'21092/1092>9r+1 2"'20r+r1

(3.1)
and
Op+0y+- 0y, =1 (3.2)
By (2.11) and (3.2), we have that if r; = 0, then
b =00 > 81 (3.3)

For ahort, write {8,}’ = {06,'01;"',0r:07+1r"')or+n}r and {01}' € 0.
Write
r=r +¢,
with
81 Z RaEs 2 91" 2 t0/5 > 6r’+1 Z ¥ "'2 0r’+r"- (3-4)
We now describe the set E(f). Suppose 8 = 6/11 +sy and fg = 5/11+¢/2.

We define E(8) be a set which contain all of sequence {8, 6;,---,0x} with
(2.7) which satisfies one of following four properties :

(I) There exists at least one complementary partial sum {a;,az,0} of
{60,061, - -, 6} which satisfies one of following conditions :

(3.5) a1 < tg, a3 < 4 — 8ty (see Lemma 4.4 of [4]);

(3.6) 1 —20t5/11 > o > to/5 and o > az > 8to/9 or o > to/5,a1 > to and
az > 8ty/9 (see (4.1.3) with i = 3 of {4]);
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(3.7) a2 < ip,8; <ip and o < 1 — 20tp/11 (see (4.6.1) of [4]);"
(3.8) o > tp/2 {#ee Lemma 4.3 of [4]);
(3.9) a1 2 tp, a2 > t; {see (4.1.1) of [4]);
(3.10) a1 > to,a2 > 44/5, and o > 15/3 (see (4.1.3) with i = 1 of [4]);

(3.11) to > a2 > 4ty/5, and 1 ~ 2045/11 > o > t,/3 (see (3.7) and (3.10)
above);

{3.12) 1 -20t/11 > ¢ and m, < a; < M, (see (4.4.4) and (4.6.1));
(3.13) 1/2 > a1 > 1o, and o < 1/2 — 8ty/3 (see (4.5.6) of [4]);
(3.14) o > to/4,a;1 > to and az > 6t/ 7 (see (4.1.3) with i = 2 of [4]);

(II) There exists at least one complementary partial sum {a1, a2, a3, o} of
{80,601, -,6i} which satisfies

(3.15) a1 > to,02 > to/2,as > to/4 and o > 24o/7 (see (4.2.1) of [4]);
(3.16) @y > to,a2 > /3,83 > to/3 and o > 2ty/5 (see (4.2.2) of [4]).
(1II) {80,601, --,0:} satisfies one of the following conditions:
(3.17) ko= 6,0 = 0p < to/2,t0/5 < 85 < - -- < b1 < 2to/7 (see (4.7.4) of [4]);

(3.18) There exists at least one complementary partial sum {a1, 62,43, 0} of
{89,61, - - ,0x} which satisfies o = fp,a; < lp,a2 < 1/3 and a3 < /5
(see Lemma 3.10 with ¢y = 5/11 — ¢ of [4]).

(3.19) o = bp,a1 < 8t/9,a2 < 4tp/9,a3 < tp/4,anday = 1-0-a1—-a2—az <
to/4 (see (4.7.3) of [4]).

(3.20) o = fp,8;1 < 19/2,a82 < 19/2,a3 < 489/9,84 < tp/4,and a5 =1 — 0 —
a; — az — a3 < t9/4 (see (4.7.7) of [4]).

(3.21) o = 6y,0; < to/5, and o > 3t/8 + 0;/8 (see (4.7.9) of [4]).
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For a fixed 0 < 1 —20¢0/11, in ‘4] we proved rhat there exists a pair of
numbers (my, M,) with the propestiex

M, —m, > t,/5if 0 > #3/5; (3.22)
My, —my < o if o0 <1y/5; (3.23)
M, > tg > my; (3.24)
and
M,+m,+0=1 (3.25)

(IV) Suppose {a1,a3,0} or {a1,a3,a3,0} be a éomplementary sum of
{90; 019 5 )0k} with

m, <a; < M,, (i=1o0r2), (3.26)

(See Lemma 4.5 of [2]).
Moreover, for t5/3 > 8 > to/4, we have that

3mg/2 + 30 < 1. (3.21)

Applying Theorem A and Theorem B, Theorem 1 follows from
Theorem 2. Suppose § = 6/11 + ¢, and D’ such that

DND*=Q,
then for every {8;} € IV, the all of corresponding {8;} € © contain in E(6).
§ 4. LEMMAS.
Let 0 = 6/11 + ¢ and {00, 01, -, 04} with (2.7), i.e.
Oo+6+---+6h=1

In this section, we shall show some sufficient conditions for {8, 6;,---,0} €.
E(0). By the definition of E(f) we check that {0} satisfies at:least one of
conditions (3.5) - (3.19), and (3.25). When 8} > t5/2,{0;} € E by (3.8).
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Vrzen & < 6 < i/2 and @) < 2o/2, we hav2 thai r, # 0 by (3.3) and
Or4r, < o5, 16t @y = 01,0 = By4,, and a2 = 1 - gy - 0, then {4,} € E by
(3.13). w7

Lemma 4.1. Suppose there ezist two elements & and 67 of {6y,0:,---,0:}
with @ < 1 — 20tp/11 and 0" < i9/5. If there exists a partial sum s of

{80,614, ,0x}\{0', 8"} such that s < 1o and s+6' > to, then {8o,6:, - -0} €
E(8).

Proof. We discuss following three cases :
Case 1. t() S 8+0’ < Mgn.

Let o = ¢ and a; = s + ¢, we have that {6y,6,,---,0:} € E(8) by (3.24)
and (3.26).

Case 2. s +60' > Mgn.
By (3.25), we have
1-8-0-0"<1— Mg —8"=mgn
and, by (3.23),
1—8—8 < 0"+ mgn < Mpu.

Let ay = 1—s—- & and o = &, if a; > mgn, then {00,61,---,0:} € E(0)
by (3.26). If a; < mgr < to, then {fp,01,---,0} € E(8) by (3.7) since
az=1-a1—o<mg» <tpand g =60" <1-20§/11.

Lemma 4.2. Suppose {a1,a2,0} be a complementary partial sum of {6¢, 0, ---

with a; = 9;’-’- ---+0L’,az = 9’1 + ~-~+0£,a1 > az,1 - 20t5/11 > o =
1—-a1—a2>1/2-8t/9 and )
maz {8, 00} — maz{fh, -0} < to/5; (41)

then {60, 01,-: -, 0} € E(6).

Proof. If a; < iy, then {fy,01,---,0:} € E(f) by (3.7); if az > &y, then
{60,601, --,0:} € E(0) by (3.6); if ms < a1 < Mo, {0,01,---,6} € E(6) by
(3.26).

H 0k}
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Now we suppose a; > M,.
By (3.23), we have

Ot Oy + O = O 4o b L+ (B8]
>M,,——t§2m,.

¥
0;’+"'+0"._1+9’)‘<Mm

let @y = 6Y +--- + 8;_, + 0}, then {6o,01,---,6:} € E(8) by (3.25); if
6{’+"'+0],:_1 +9L Z Muy
and
0+ -+ 0 2+ 0+ 6 < M,

repeating above process, let a; = 8) + ---+ 8 _, + 6 _, + 0; we also have
{05,6y,---,8,} € E(6). And repeat it again, we have that, in all cases,
{60,801, -,0:} € E(0) since

O+ +8, <ty < M,.

LEMMA 4.3. ko = 3,0 > 2to/5,a2 > o/3,a3 > t0/3,82 + a3 < 4 — 8ty
anday =1 - o — az — as; then {g,} € E.

Proof. If a; > £g,{6;} € E by (3.16). If a; < iy, {6;} € E by (3.5).

§ 5. PROOF OF THEOREM 2.

We will prove that : if {§;} € D\ D*, then {§,} € E. By Theorem 1, it
is enough to show those {6;} with {8} + 841+ -+ 0r4r,61,---0,} ¢ D*
belong to E.

Denote kg be the integer with

Y ti<io (5.1)
1<i<ko -1
and
S 8>t (52)

1<j<kg
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By (2.14}, {6,} € E if 8} > to/2. By {2 2), we only neced to discuss the cases
with

to/22 8. (5.3)
If vy = 0, then
/2> 8,=060>--->0, (54)
and '
{6;Y = {6;}.

Lemma 5.1. Suppose kg > 4 and v + vy > 0, then {8;} €E.
Proof. By (5.1) and kg > 4, we have

to 20
€2 1=t
0’: 3 <1 ah

By Lemma 4.2 and r4r, < $o/5 if r + ry1 > 0, we have {§;} € E if
ko‘< r+r.Hko=r4+mr,let 61+-~-+0§.__1 < 10,62 = 0") < o and
o = Oy <1-—208/11, we have {6;} € E by (3.7).

Lemma 5.2. Suppose v’ > ko + 5, then {0;} € E.

PI'OOf- Letay =61+ -+ 0xy > to,82 = Og41+ -0, > tp and o = 6,
then {8;} € E by (3.9). -

Lemma 5.3. Suppose that kg > r’, then {6;} € E.

Proof. Let ¢ = 8p,a1 = 01 + --- + Oxy-1 and a3 = O, < 1p/2 < 4 — 81
if ko = r + 71, then {8;} € E by (3.5). If kg < r + 1, then {8;} € E by
Lemma 4.1. '

Now may suppose that

' ko<r' <ko+4 (5.5)
By (3.4), 0; > to/5 for j < ko (since kp < #'); then by (5.1), we have that
ko < 5. By (5.2) and 6, < to, then we have that ky > 2. Now we may suppose
that
2<k <5. (5.6)

We &iscuss the following cases :
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Case 1. & = 3.
By Lemma ¢.1, we may suppose that " +r; = 0. Then {4;} = {eu 8.}
By (5.5) we mzy suppose that 5< ¢ < 9.

Hr<Tletay =01+ - +01 <10,02 = Oy +0i5 31 +00 43 S Sto/4 <.
4 —8tp and o = g, then {0;} € E by (3.5)..

Hr =8let s =00,81 = 0:+0; <lg,a3 =03 +0s <to/2,a3 =05+ 06 <
to/2,a4 = 07 < to/4, a5 = b7 < to/4, then {0;} € E by (3.20).

If v/ = 9, we have

01 4+0:+ 03+ 04> 8/9
since {8;} ¢ D}. Let ay = 01 + 03 + 03 + 0, and ¢ = 05 > 1y/5, we have that
o < ay/4 <1p/d <1-—20ty/11, then {05} € E by (3.6).
Case 2. k) = 4.

By Lemma 4.1, we may suppose that " + r; = 0 again. By (5.4), we may
suppose that 4 < ¢/ < 8.

Iff_ﬁ,ht a1 =01+ 03+0s <tp,09 =04+ 0 < 283/3 < 4 — Biy, then
{8;} € E vy (3.5).
r=6

When 85 > 15/2, then {0,} € E by (3.8).

When 8 < t9/2, we discuss the following three cases :

(1) 8o + 85 + 86 < to-

Letay =8 + 05 + 0 < 29,02 = 03 + 83 + 03 < o by (5.1) and ko = 4 and
o =0, < 85 < 1 20to/11, then {8;} € E by (3.7).

(2) 6o + 85 + 0g > to.

If 6; > 21y/7, by 6y < t5/2, we have 05 2 to/4. Let ay = O + 05 + 05 >
to,a2 = 03+ 04 > 15/2,a3 = 02 > tp/4 and o = 6y > 249/7, then {8;} € E
by (3.18). If 6, < 2t0/7,{0;} € E by (3.17).

r= =
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U by+ 65+ 0g + 87 > 2o, we have
do > 260/T {5.7)

siace {f6p,---,07} ¢ D3.

Let @y = 04+ 05 + 06 + 87 > to,a2 = 03 + 03 > t0/2,a3 = 8; > tp/4 and
o =85 > /7, then {8;} € E by (3:15).

I 0s+05+0s+87 < tg, by Lemma 4.2 and 0y + 02+ 03+ 04 > tp,{0;} € £
if 8y — 67 < 1o/5. If 6; — 87 > 1y/5, then §, > 2t,/5, and, by (5.1) and ky = 4,

9, < to ~ 03 — 01 < 2iy/5,

i.e. §3— 67 < tp/5. By Lemma 4.2 again, we may suppose that 02 + 83+ 04+
05 < to then 04 + 85 < tg/2,1let ay = 6, < to/2,a2 = 02 + 03 < t5/2,a3 =
04+ 05 < t9/2,a4 = b5 < to/4, and a5 = 07 < 1y/4, we have that {f;} € E
by (3.20).

r'=8.

H 65+05+07+8s > to,let ay = 01+02+03+84 > to,ap = O5+06+07+6s >
to, and o = f, then {4;} € E by (3.9).

If 05 + g + 87 + 8 < tg, by Lemma 4.1, {0;}e Eif8;, -6 < t0/5. Now
may suppose 8; — fg > to/5, then

O3+ -+ 85 <1— (B0 + 01 +62) <1—5(t/5) < 1 — 8/9;

let @y =604+ 685+06+087+03 > 15,0 =03 > t/5,aa=1~a,—-0c> 8t,/9
then {8;} € E by (3.6).

Case 3. ky = 3.

By (5.1) and (5.2), we have that

b +02 <ty (5.8)

and
01+ 02+ 03> to. (5.9)

We discuss the following cases :
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Case 3.1. ‘93 4 {’4 + ﬂ5 7 10. .
By {3.2), (3.3} and {4.4), we have that, if r >

03+ 84 + 05 < 1/2
and, if r < 4,
03+04+95 < 0A4+t0/5 < 1/2.

Ifr+r >0, let ¢ = B,-+n < tg/5,a1 = 93 + 84 + 95 € [to,l/Z}, and
a3 =1—a; — o, then {9"}’ € E by (313)

If 4+ vy = 0, we have that #' > 5 since 65+ 64+ 65 > {p and 65 < 83 < ty/2.

If ¢’ =5, from {6p,0:,---,05} ¢ D3, then 8y > 2¢5/5. In this case we have
G5 > t0/3. Let ay = 03+ 84+ 05 > tg,00 = 65 > t0/3,a3 =6 > t(}/3, and
o =1~ ay a3 —ay =0, then {6;} € E by (3.22).

Hr'>5,0=1-a —ay—ag>0;+0 > 2{/5, then {4;} € E by (3.16)
again.

Case 3.2. 03 + 85 + 85 < tg.

By Lemma 4.2, we only need to discuss the cases with
81 — 85 > /5. (5.10)

By (3.1), we have that
6() > 91 > 2t0/5. (5‘11)

We discuss the following cases :
Case 3.2.1. 6, < £y/3.

By Lemma 4.1, we only need to discuss those cases with #” + r; = 0. If
v <5 let ey = 6p+6; <ip,0 =0, <1-20ty/11, and o = O3+ 04 + 05 < to,
then {6;} € E by (3.7).

If v’ > 6, by Lemma 4.2, we only need to discuss those cases with §; +
64+ 85 > t; since 61+62+483 > toand §2 — 05 < to/5. Let ay = 6o +62+83 >
to,a2 = 81 + 84 + 85 > tg,0 = 1 - a; — ag, then {#;} € Eif # > 6 by (3.9).
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Case 3.2.2. 97 > ¢-/3 and 83 < 1 — 20£p/11.

Let o = 60 > 2¢9/5,85 = 83 > $p/3,a2 = 0, > t5/3 and
ag =83+ ---+ 0,

then {8;} € E by (3.18) if 63 + - - - + 6, > ty. Now may suppose that
O3+---+6: <to

Let o = 8,41 = 03 + --- + b, and az = 6y + 03, then {§;} € E by (3.5) if
9; + 82 < 4 — 8t9. Now may suppose that

8:4+82:> 48 (5.12)

also. Let a; = 0; + 02 > 4 — 8ty > 4t5/5,0 = 04, then {9,} € Eift/3 <
85 < 1 — 20tp/11 by (3.11).
By Lemma 4.1 and 63 < 1 — 205/11, we may suppose that r” + r; = 0.
We discuss the following cases :

rzt

r'>Tletay =01 +02+4+03> 80,02 =04+ 054+ 06+07+---+ 0, > 4(ts/5)
and o = g > 01 > (61 + 02 + 63)/3 > 1y/3, then {f;} € E by (3.10).

(2) r =6.

I 5+84 < 15/2,in (3.20), take a1 = 61,02 = 02,03 = 03+04,04 = 05,05 = 05
and o = g, then {01} €EE.If03+ 04 > t0/2, let

81 = O1+03+05>2— 4o+ to/2> 8p/9,

Il

ag 6o+ 82+ 05 > 4 — 8tg — 10/5 > to,

and o = 6 > to/5, then {8;} € E by (3.6).

(3) ¥ =5.

Let o = 03,82 = 81+82 > 4—8Lp > 4iy/5and a;y = 10— a;, then {0,} €F



18 Shituo Lou and Qi Yao

by (3.10) if O3 > to/3 and by (3.26} i dy + §2 > my,. Now may suppose that

93 < /3 and
8 + €, X my,.

By (3.27), 63 > to/4, thus
Op+ 01 =1—03—--— 85> 1—mg /2 - 303 > mg,.

Let o = 03,a3 = 8 + 6 and a; = 1 — & — a3, then {f;} € E by (3.26) since
0o+ 01 < to < Mg,.

(4) ' < 4, let a; = 6, + 0 < to by (5.3) az = 3 + 84 < 2(1 ~ 20£9/11) <
4 — 8tg, then {8;} € E by (2.5).
Case 3.2.3. 63 > 1-205/11 and 64 < 1-20t5/11. By Lemma 4.2, {6;}’ € E
if »” + 7, > 0and

ay =01 +02+84+ - 0ryr 12 1.

Now we discuss the following cases

(1r+r =0

We know that ' > 3.

When v/ =3, let a; = 8y + 62 < tg,a2 = 83 < 1/3 < 4 — 8¢y, and o = b,
then {6;} € E by (3.5).

Whenr' = 4,leta; = 6p+6; < to,a2 = §2+03 < tp,ando =1-a;—~ay =
84 <1 - 20to/11, then {4;} € E by (3.7).

When »" > 5,

0y + 62 + 84 > 2(1 — 20ty/11) + to/5 > 8¢5/9.

Let ay = 6, + 8, + 84 > 84/9 and o = 65 > ty/5, then {6;} € E i
61 + 62 + 84 < Ms, by (3.25). Now we may suppose that

01 +6; +04 > Mﬂn
When r' > 6, we have that

6o+ 03 + 8¢ > 2(1 ~ 20t5/11) + £o/5 > 8tq/9
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AL Let gy w8y + 83404 > tg, 82 = g + 53 + B > &:,/8 axi.d v =05 > $/5,
then {5,+ € E by (3.6). Now we discuss those cases with v/ = 5. When
0548, > 641/7 and 84 > to/4,let G2 = 0y + 93,0 =F4and gy =1 — a2 ~ 0,
theu {£;} € ¥ by (3.14). Now we may suppose that

8 + 6 < 6Lp/7.

If 92 + 83 < 4 — 8tp. Since 61 > 245/5 (see (5.11) above), let o = 61,82 =
02 > to/s,a3 =83 > ty/3, and a1 = fp + 84 + 05 if 6o + 04 + 05 > tp by (3.6);
let o = 81,62 = 02 + 03, and a; = 0y + 04 + 05 if Oy + 85 + 05 < ¢ by (3.5).
Now may suppose that

02+ 03 > 4 — 8.

Let a1 = 61 + 03 > 4 — 8ty > 4to/5,0 = 84, then {0;} € E by (3.11) if
10/3 < 64 < 1~ 20fy/11. Now may suppose that

04 < ty/3

also. If o > 05/8 + 3to/8, then {6;} € E by (3.18). Thus {6;} ¢ D} implies
s < to/4, we have that {8;} € E by (3.20).
(2) r'+r1 >Oand01+0;+94+--'+0,+,1_1 < tp-

By (3.4), v’ +r; > 0implies 6,,,, < %.By (3.4) 64+0,1,, < $+% < 4-81,.

Let 0 = 8g,a2 =84+ 9,.;.,., anda; =0 +02+04s+---+ 9,.“-,_1 < g, then
{8;} € E by (3.5).

Case 3.2.4. 8, > 1 — 20t0/11.
If 8, > ty/2, by (3.1), we have that
804841+ -+ Orpry 261 202 > 63 > 04,

and
r4ry

G+ Y 6;=1
j=1
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Thos
O3 +03+84 <126 <1—1g,

and 2
O3+ 04 < §(l—io)< 4 — 8¢,.
By Lemma 4.3, we have that then {§;}’ € E if there exists a partial sum of
{6,6:,63,65,- - 6,4, } belong to (2t9/5,0/2]. Now we only need to discuss
those cases with 6 < 240/5. By (3.1), we have that
O2+0,41+---+ 9'4." >1- 20t0/11 + 6, — (’) > 2to/5.

Then there exists a partial sum of {62, 8,41, -, 0,4r, } belong to (2to/5,%/2]
since 82 < to/5 and 8,41 < £/10 = $5/2 — 2t3/5. Thus {#;} € E in this
case.

Now we discuss the case : 6 < #p/2.

When 03 + 04 > 4 — 8y,

Since we only need to discuss those {6;}’ which corresponding {6;} ¢ Dj,
we may suppose r > 5. Thus

95(‘0—93-—04<t0/5.

Since we only need to discuss those {0;}’ which corresponding {6;} ¢ Dj,
we may suppose r 2> 6. Let ay = 03+ 04+ 05+ 06 > 4 — 8ty +10/5 > {o,a2 =
02 > 19/3,a3 =03 > ty/3,0 =1 —ay — az — ag > 6; > 24/5, then {6;} € E_
by (3.24).

When 03 + 84 < 4 — 8¢y, by Lemma 4.3, we only need to discuss those
cases with

b2 < 61 < 2ty/5,
g < 2to/5,
and
0o+ Bryr+ -+ Opppy < 260/5
since 0,43 < £0/10 = tg/2 — 2t/5. Thus

b3+ +6,=1-6,-0,—0;—0,41 -+~ Opyr, > to,
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and r > 6 zince §3 -+ 4 + 85 < tg. By (3.1),
Os=1-85—  —~8¢-05---- —Op4r, <1—5(1—20t/11) - £./16 < #/5.

Since we only need to discuss those {6;}’ which corresponding {¢;} ¢ Dy,
we may suppose that 84 + g < 1y/2. By Lemma 4.3 again, we have that
then {6;} € E.

Case 4. kg = 2.

‘We have 6; > (01 + 02)/2 > tg/z.

If 8 > to/2, then {8;} € E by (3.4).

Now we may suppose that 8 < #y/2, thus by 8) < §;, we have that
r1>0.Letay =0+ 83,06 = b4y, and a3 =1 — g — 0, then {9,‘}' € E by
(3.13) if 6; + 6; < 1/2. Now may suppose that

6 +86,>1/2

By (3.2), we have that 8, < 1/3. Let 0 = fy,a2 = 02 and a1 = 61 + 63 +
«++ + Bpiyy, then {6;} € E by (3.5) if @y < ¥;. Now may suppose that

01+03+ -+ Opyr, > to. (5.14)
If 83 < 1 — 20ig/11, by Lemma 4.1, it is sufficient to discuss that case with
01 4+603+--+ 0,401 <. (5.15)

Leta =61 4+03+ -+ 0ryr-1,82 = 02,83 = 0,4, and o = g, by (3.18)
we have that {§;} € E.
If 63 > 1-20t6/11, by (3.2), f1+6; <1/2. By (3.19), {0_,’}’ € Eifé+03 > .
Now may suppose that 8; + 83 < to. If r > 4,
B < 1= (0 +0rps+ -t Biry) — B~ s~ Oy
< 1-3/4-(1-20tp/11) < 1 ~ 20#p/11.

By (5.14) and Lemma 4.2, we only need to discuss those case with (5.15)
again. Let a1 =61 + 893+ ---+ 0,4,,-1,02 = 02,03 = 8,4,, and & = B, by
(3.18) we have that {6;} € E again.
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Theorem is complete already.

§ 6. THE PROOF OF TEEOEEM 1.

Take ¢ = 1o/10.
Define a direct product I = {fg,---,6,} be
I={d:d=do-d,dh € I;, [; = [z%,2¢%) and p(di) > 2°1 <i < r}.
(6.1)
For I, we define, for 1 <k <r,
I(k)={d:d=do- dxPr+1" " Pr, i € {1 < i< k),p; € I;,(k+1 < j<r)andd € I}.
(6.2)
In this section we will choose H) and to make it as large as possible.
First we write S| to be a sum of some disjoint direct product of I which
is defined in {6.1). Set
Hy; = Unp=o{/}-
By Theorem 3, Hy ; satisfies (2.2} write

Hi’,x = S} \H‘k,l-
Thus
H{, CD".
We want to choose some “good set” from D*. We write
D, = {I(9): T € DI}
Then we have
Di = D, U{D{\ DY),
where D is a collection of direct product I's with I = Iy---Z,,r > 10,
I = {g()v“ "01'}7

where (8y,---,63) satisfy the conditions same as in Dy b+ -+ 6, €
(t0/5,98), and d € I if and Olﬂy ifd = dO"'dspg-“p,-,d.* e Ii and P; c Ij
and

D! = D)\ D
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By Thecrem 3, we have that T in D7 satisfies (2.2).
By the method thar we will use ia § 7 (see (7.4}), we have

oricol 2
010 (57
Thus we can replace Dj by Di; in H. Repeat it again, we might change
D7 to
={d:d=dop---po € D}};

For Di(1 <1< 2, orr <4< 7), we can change D} to D as well. We only
need change 9 to 8 (f = 2),5(4 < i < 5),4(5 = 6) or 6(i = 7). For D3, we
only can change it to

D} uD3.
Now take

{o = Dj,Hj = D;, H; = D; UD; U D; U D}, BY = D; and HY = D;.

Otherwise

In (1.9), take cy = 1, then

x(z)-x({z~y) = yE(z,2)- Z (f(5)-1)! Z 211‘-4! Z Zl+(6!—-5!) Z Zl.

1<i<5 DeDrdeD DeDgdeD DeDjdeD

where f(1) = 10, f(2) = 8, and f(3) = f(4) = f{5) = 6.

Suppose €;(1 < 1 < 7) and ¢ be constants which satisfy :

(FE -3 1<) —1)' ,1<1i<5;

DeD}deD

4y i<

DeDjdeD

(61=5 Z z - I;z;yr

DeDjdeD

- logz
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and

By (1.13), we have that

(l_l;;e_:z! <x(z)-xw(z-y)<

(Lt eo)y
logz

We now estimate e;(1 < i < 7). First, we estimate e3. We have d € D}
implies d = dopr-+-ps Wwith do > ;1 > - > g5,z —y < dopr+--p5 <
z,p(do) > z%/'°, and

2B >d>p > 2ps >zt

Define

N’
e
IA
=
IA
8
/:_\
| &
S’
-
IA
b
IA
¥
> il
A
N
Py
IA
=
IA
3
o]

z
As={(p1, --,ps5): (;(Z;T)

7 A
Then "
. Yy
B IS o
(n’..-‘ps)eAaplp?pap4ps log PID2P3P4PS
2 dtydtadtsdtsdt
SZI/_“/ 1diadizdisdis , (6.2)
log z r bitatatats(1 — 1y —tp —t3 — tg — i5)
where
1, = 2L 2tq 12t 1-3t
A" ={(t1, -+ ,t5) : 5—gu$t13‘5—q, T Ststh, 2<ty<ty,
1—4t3

<ty <y, 15ty <5 < 14}

Estimate the integration of right hand-side of (6.2) (see Appendix), we have

€3y

511 D3 < 1
| Ds < log z

where
e3 < 0.00625.

Define :
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&1 s a set of (4, ---#;) with the flicwing conditions :
W -9262-262%
(2) 1- 01—~y > {5
A? is a set of (t;,---,27) with the following conditions:
(1) 3026, >2---20,> 4,
(2) 04> 2 02 %
(3) 1=y —--- -8 >3
A* is a set of (#1,---,25) with the following conditions :
(1) 3t0 2 t1 > 2 - 4ty;
(2) t1 >t2 >2—4ty;
(3) t2 2 t3 > maz {1 - 3,48t —1,};
(4) min{$, 98 -2~ ta—t3} 2t 2 maz {},3(1- R -t - 1)}
(5) min{ts,1— 2 —ta—ta—ta} 2ty >maz {1l -8 —t, —t3—1,};
(6) t1 < t5/8 — 3to/8;
A® ig a set of (t,---,15) with the following conditions :
(1) 1-3(4—8ig) ~ >t >2— 4t;
(2) min{1—4+8to— & — 2,6, } > t; > 2 — 4t;
(3) min{1- (1~ 2%e) — &8 21 —t5,8,} > 13 > 2 - 4ip;
(4) min{l - & —2t; —ts — 13,83} > ts > maz {4 - 8tg— 13,1 - 2},
(5) min{1—2t; —t3 13— 14,8} >85> 8;

AS is a set of (¢, -,t4) with the following conditions :
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(1) 4 > 60 > 2 - e

(2) min{9y,1- (4 - 8to) —20,} > 6 > 2 — dty;

(3) min{6:,1 - (1- 20) _ 20, — ,} > 85 > 2 - 4tg;

(4) min{fs,1 — 201 — 02 — 03} > 64 > maz {1 - 32,4 — 8ig — 63} ;
A7 i 8 set of (f1, - ,t) with the following conditions : ~

(1) B>t 2t 23>t 21— 3y

@ min{1-% -2 —ta—13,8} >t > 8 -ty

(3) min{l — 2t —ts —t3 —te—t5,85} 2 ts 2 % — 1y

‘With same reason we have

w<t@-0@ [ [ tl‘..,,{f‘,';;'ft'..._t,)»

where r = r(i),7(1) = 9,7(2) = 7,7(3) = r(5) = r(6) = 5 and r(7) = 6. We
have that (see Appendix)

e <2 (In ﬂﬁﬁﬂ)%w) < 1.1(10)~5;

3
g ((I“ 58+ (m§(m 31{;—.5) < 0.002.
€4 < 0.00276;

e5 < 0.007817;

eg < 0.01351
and
er < 0.0002071.
In Theorem C, take
ey =e) = Es:e.- < 0.0171.

=1
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and
€ =€) = eg + €7 < 0.01372

then we have that
0.969y

m(‘l‘(t)v‘l‘(t—ﬂ)(

1.031y
logz~

Theorem 3 follows.
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APPENDIX
Estimate of ey :
Define
_ 174t 2 to
A—{(tl, ,29) 2( 2 B ) 242212 5}
Then

2 . (18- 2\ ]
/ ./;tl tg(l-t, 9 t9)520( (.____11{__1'1_)) < 1.1(10)75.

Estimate of e; :

Define
A2={(tlg"',tT):thoZtlZ"'Zt‘rZ“tsg}-
Then
e2 < AM [ - fp, mmlitm

A

72) (10 §)" % + g (1n §)* (1n §)°) < 26(10)*.
Estimate of e3 :

Define

200 1 -2t 1- 3%,
Az = {(t, - ts)_‘i'<f1 5“ 4‘<tzgt1, 5 Sts<t,

1-4¢
5= St < ta,1 - Bty S 25 < ta}.
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Then
es < BU2)6) [ - Ja, HREE
< 1440 f;& dty I;Lllz:h dia f:gu—aq—-: dty .[::;‘1-'12—"2—'; di f;;11_e;-¢2—¢3»t, ?:%I
< 1440 [} day 7 oy [T day [} sk In 12 do
< 1440 ff day jf'T daz ff% das j%":a? i (2% -1) dae
< 1440]§ day ff‘L‘ daz i'_?';..,a’,a, ((]_L) (11_1_,1_ ) i (%53_1)’da3
) (112
< 360 fg da; j%r-l-T L ( = 11*& 3 (£ 1) ds
< w02 (em) (- SV () (2 - 1) da

< GHUE)E)® = 0.00625.

Estimation of eq4.
We have, for {6;} € D}

3, 4@
1=00+---+05S4(—82+—85-)+94+95-
Thus
2 3
bR P 4
ba2 5=+
and 4 6
to
B =
8s + 05 5 5
Moreover
2t 3y 66t; 29 1
<1-2(20 20 32 4fy)= 2 < 2
sl 2(5 5) (2-dh)=5"-F <5
and
1 2 3ty 23ty 19 21
Al JPOR ] P (P, /() € e g I
9152(1 2(5 5) A2 4t°))— 5 10 <110
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Then

€4

IA

21 5
(51)(5)(2) S1 b J3! 48 (33 65 [T 8 [ P

< 1200 ff‘f do gdé?z j]‘;; df, f: ?: _;‘,))fi'

) . e 21 9 2 . 2
v 1200 (%) (5P oy (5~ £)° + (m 53R ) B ()7
< 0.00276.

Estimati~n of e

Di ={(f0,--,05) :t6/226p 2 9y > --- > 03 > 1-20tp/11,834 04 > 481y,

to/5 > 85 > 10/10,80 + 85 < to/2}.

We have that

Bo < 5/22 ~ 65/2 < 9/44,

and
1/22 < 65 < 5/11 — 28 < 5/11 — 26;.
Thus
dty---dt
es < ()@)58) [ [ TS
ay hi-ots
where
As = {(ti,ts): &<t <& E <ta<min{l 2,1},

1
& <ty <min{ts, 35 — 20 —ta} ,maz {§ ~t5, 57} St Sty
{
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We have

IA

€5

1320]1”I dt, f'""'{””"‘ “} gy JE

IA A

IA

1320(5.5)7 j? (5-5 (t:
E (G-
219625(5¢ (& (&) +

5 (L&) + 4 (%)

0.007817.

-4
1112—22
2

A+

4+ U
5

W /g
)+ 2 ('1_8

N+

We estimate eg now.

We have

D; = {(eo, 00): 2 > 00>

Thenl—Bl— 34:002]/5,&!1(1

s < (4)(2(3) [ - /

where

Ag = {{t1,---.14):5/22> 41 >

(5(2)(5.5) [ A I pirli-nt g, 1% dts [

t1 tg ta

1320(5.5)31‘%’&1 pminl -3} (32 (ta - 2)* + (0B) (- &) (9 - 44t1)dto
+ I’—}i (t: -
5 — 2t1) ) (9 — 44t1)dt1]

(&) + 5 (3 (&)

S> ty > 21121 85 +8c > 4711, 28,

Shituo Lou and Qi Yao

In(10—-44t1) dt4

titataty

((5.5) (ts — &) +InZ2) (9 - 44t1)dls

2)7) (5 - 4atr)at

(&) +

>8> 1——%—t0,03+04>4—8t0}.

dtldtzdt3dt4

Thigtsty

Llg+f3+ts <1}



Primes in short intervals 33

Thus
—5 mln{——Ztl,u}
€s _<_ 240]17 dtl f” % dt f dt3 f“ —_i_mztm
< 240 ff,* dt; ’"‘"L‘Lﬁ‘z“"‘} dta [§ s (1) + o) de
3
mtn{ -2, } -
< 240(5. 5)_[ dty 34 %—r Ut .[9 t;{.ztg (1_11.’1_2 +In )dt3
mtn{ ~2t1,4}
< 240(55).f1§?dt1 i %_ o Tlt)-(sTs (tQ- ) ( %‘)( _%))dtz
_zg 2
< 1320j7 dty _3,_‘ et (3 (- 2)"+ (B) (2 - F)) dta
—2t 2
+1320 [ dn fé by 7—q (% (2= 2)" + F) (12— &) a
<

2 3 3
1320 @) [F R (r-20) - (% - %)
]

T8
In22
HE-20) WP -EE-D

% _22 22
+ 1320 F (P -2 - (-4 + Pl bx
4 4 3 In2 3
< 31984 (3 (&) - @) () + & (0B) (3)° - B ()°)
4 In¥ 3 InZ
+ 29937[235' (_3) T ss) +124 (12)8)4‘%3?5‘(55) +_6j(31§) “—sn(

+ B8 (1) - B (&)%) < 001351,

Finally, we estimate e;. We have

er < ()5 [ - / .-

where
Ap={(t, - t6) 1 2/11 > t; > --- 2 £4 > 21/121,1/11 > &5 > 15 > 1/22}.
Thus

er < 4'(In )4(1 —In2) < 0.0002071.

EDITORIAL NOTE. Editors came to know (by private comumunication)
that Theorem A of this paper was proved independently by Professor D.R.
HEATH-BROWN long ago. He had a lot of unpublished material dating
back to 1983 regarding Theorem A.



