On the zeros of a class of generalised Dirichlet series-VIII - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 1991

On the zeros of a class of generalised Dirichlet series-VIII

Résumé

In an earlier paper (Part VII, with the same title as the present paper) we proved results on the lower bound for the number of zeros of generalised Dirichlet series $F(s)= \sum_{n=1}^{\infty} a_n\lambda^{-s}_n$ in regions of the type $\sigma\geq\frac{1}{2}-c/\log\log T$. In the present paper, the assumptions on the function $F(s)$ are more restrictive but the conclusions about the zeros are stronger in two respects: the lower bound for $\sigma$ can be taken closer to $\frac{1}{2}-C(\log\log T)^{\frac{3}{2}}(\log T)^{-\frac{1}{2}}$ and the lower bound for the number of zeros is something like $T/\log\log T$ instead of the earlier bound $>\!\!\!>T^{1-\varepsilon}$.
Fichier principal
Vignette du fichier
14Article2.pdf (4.25 Mo) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-01104792 , version 1 (22-01-2015)

Identifiants

Citer

R Balasubramanian, K Ramachandra. On the zeros of a class of generalised Dirichlet series-VIII. Hardy-Ramanujan Journal, 1991, Volume 14 - 1991, pp.21 - 33. ⟨10.46298/hrj.1991.122⟩. ⟨hal-01104792⟩
38 Consultations
459 Téléchargements

Altmetric

Partager

More