An $\Omega$-result related to $r_4(n)$. - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 1989

An $\Omega$-result related to $r_4(n)$.

Résumé

Let $r_4(n)$ be the number of ways of writing $n$ as the sum of four squares. Set $P_4(x)= \sum \limits_{n\le x} r_4(n)-\frac {1}{2}\pi^2 x^2$, the error term for the average order of this arithmetical function. In this paper, following the ideas of Erd\"os and Shapiro, a new elementary method is developed which yields the slightly stronger result $P_4(x)= \Omega_{+}(x \log \log x)$. We also apply our method to give an upper bound for a quantity involving the Euler $\varphi$-function. This second result gives an elementary proof of a theorem of H. L. Montgomery
Fichier principal
Vignette du fichier
12Article4.pdf (2.39 Mo) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-01104372 , version 1 (16-01-2015)

Identifiants

Citer

Sukumar Das Adhikari, R Balasubramanian, A Sankaranarayanan. An $\Omega$-result related to $r_4(n)$.. Hardy-Ramanujan Journal, 1989, Volume 12 - 1989, pp.29 - 30. ⟨10.46298/hrj.1989.113⟩. ⟨hal-01104372⟩
125 Consultations
611 Téléchargements

Altmetric

Partager

More