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AN !1-RESULT RELATED TO r4{n) 
SUKUMAR DAS ADBIKABl*, R. BALASUBRAMANIAN* 

and 
A. SANKARANARAYANAN** 

§ 1. INTRODUCTION. 
Let 

g(n) = Lh(d) (1) 
din 

00 

where h is a multiplicative function such that 2:h(d) is convergent and 
d=l 

h(d) = 

and 

00 h(d) Mo(z)=zL:-
ct=l d 

Ro(z) = }:g(n)- Mo(z) 

R1(z) = L:ng(n)- M1(z) (2) 
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Let n) denote the number. of r.epresentations of the positive integer n 
as a sum of k squares. If we put h( d) = where 

a(d) = -3if4ld 

= + 1 if 4-f d, then we have 

g(n) = 
(See page 205, Hua [5] for an equivalent expression). 

Let z) be the error term defined by 

Szego [7] showed that, if k = 2,3,4 (modS), then 

= O_((z log 

and if k = 6, 7,8 (mod 8), then 

= O+((z log 

(3) 

(4) 

(5) 

For the particular case k = 2, the result had been proved by Hardy [4) and 
the best n_ result to date is due to Hafner [3] which is 

1 1 P,(z) = {L((z log z)l(loglog z)--rezp(-B(logloglog z)')) (6) 

The best n+ result to date is due to Corradi and Katai (1], namely 

P2(z) = O+(ztezp(c(loglog z)t(logloglog z)-t)) (7) 

(for eg. see Grosswald page 21, [2]). 
Our object of this paper is to consider the case k = 4 and we prove the 
following theore:rns. 
THEOREM 1. We have 

P4(z) = O+(z loglog z). 

REMARK 1. Our treatment is inspired by a paper of Montgomery [6]. We 
also observe that an elementary proof of a theorem of Montgomery (Theorem 
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1 of (6]) follows from our treatment which we state as 

THEOREM 2. If g( n) = 'Pt> where tp( n) is the Euler's totient function, 
then we have 

Rt(z) . rr:::-:: --- Rolz) < ezp(-cylog z) z . 
for some c > 0. 

REMARK 2. We feel that the can be applied to some other 
interesting arithmetic functions. We intend to take them up in a further 
work. · 

§ 2. NOTATION. 

1) { z} denotes the fractional part of z. 

2) [ z] denotes the integral part of z 

3) (a, b) denotes the greatest common divisor of a and b. 

4) f(z) = O(g(z)) or /(z) < g(z) denotes that there exists a positive 
constant A such that 1/(z) I< A g(z), where g(z) is real. 

§ 3. SOME LEMMAS. 

LEMMA 3.1. We have 

h(d) z Ru(z) = -zE-- l:h(d){-} 
d>z d d 

PROOF. We have, 

Ro(z) = Lg(n)- Mo(z) 
n<z 

= LLh(d)- M 0(z) 

= Mo(z) 
d<z 

= _:zE¥- 'Eh(d){i} 
d>c d<z 

(by the definition ofMo(z)) 

which proves the lemma. 
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LEMMA 3.2. If b, r(> 0) are integers such that (b, r) = 1 and {3 is a 
real number, then we have 

" bn . r-1 · 1:{- +/3} =- + {r/3} 
n=l 7' 2 

(3.2.1) 

PROOF. We note that both sides are periodic in {3 with period So we 
assume that 0 {3 < *'· We can also assume that b = 1. H {3 = 0, then the 

7'-1 

left hand side of (3.2.1) = L:; = !jl. If 0 < {3 we have 
n=l 

n=l ¥ + {r/3} 

which proves the lemma. 

LEMMA 3.3. With notation as in Lemma 3.2, for any integer N, we 
have 

N Nr-1 
L... {- + {3} = -{r/3} + -2 (-) + O(r) . 
n=l r r r 

PROOF. We haveN= Qr+ R for some 0 R < r. Therefore from Lemma 
3.2, we have 

N R 
1:{':,'> +/3} = Q{r/3} + Q(";t) + L {':,'> + /3} 
n=l n = l 

which proves the lemma. 

LEMMA 3.4. We have 

= + N(;;tl + O(r) . 
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PROOF. We have 

Rt(z) = Eng(n)- Mt(z) 
n<z 

= L h(dt) · d1d2- Mt(z) 
d1d2<z 

= Edth(dt). E d2- Mt(Z) 

= l E h( dt) . dt ( T. - {f.})( f. + 1 - {f.}) - Mt ( z) 
- dt<z 

= il:h(d) · + i- 2i{i}- {i} +HPJ- Mt(z) 
d<z 

= + iL:hCd)- zEh<dHil 
d>z d<z d<z 

-i"Eh(d). + i"Eh(d)dU}2
• 

From Lemma 3.1, we have 

- = Ro(z) + 
d>z 

and so we have 

RtJz)- Ro(z} = i"E¥ + i"Eh(d) 
d>z d<z 

- 1 ""'h(d)d{ f ·H - p: }2 ) 2zL... . d 

which completes the proof. 

LEMMA 3.5. If there exists a function G( z) such that G( z) and 
are increasing functiom of z, then we have 

""' z z Ro(z) =-kh(d){d} + 0(1) for y G(z)" 
_11 

PROOF. Since "Eh(d)U} = 0(1) for 'V the lenuna follows from 
d>Jt 

Lemma 3.1. 

LEMMA 3.6. For integers q G(N) with G(N) as in Lemma 3.5, 
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{3 = q and f1 = we have 

N (e,q) 1 /3 h(f) 
ERo(nq+ /3) = N E h(e)-e-(2- {-(e )}) L -1 + O(N) 
n=l •S• ,q lSI 

(/,9)=1 

PROOF. We have 

N 
ERo(nq+ 13) 
n=l 

N 
=- + O(N) 

(Since fl = > 
N 

=- + O(N) 
n=l 

N 
=-Lh(d). E n + /3} + O(N) 

d<fl n=l 
- 4 1 

= - Lh(d)( q){ + N(1,q) ( + 0( T£qy)) + O(N) 

(by Lemma 3.3) 

=- i> + O(N) 

= -N L !) E ¥ + O(N) 
cS• J<{ 

(/,;)zl 

(by writing d = ef where pIe::::} pI q and {f,q) = 1) 

which proves the lemma. 

LEMMA 3.7. We have 

E a<n> = 2log 2 + o<!.> 
n z 

where a(n) is as defined in§ 1. 

25 
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PROOF. We have 

-"..!..+"1- "...L L...J 4n wn w 4n 
4n<z n<z , 4n5z 

== E!- E1 
== 

which proves the lemma. 
LEMMA 3.8. If h(n) = ar) and so g(n) = then we have 

Rt(z) - Ro(z) = 0{1). 
z . 

00 

PROOF. Since is convergent and I l:a(d) 3 for all z, the lemma 
d=l d<z 

follows from Lemmas 3.4 and 3.7. -
LEMMA 3.9. Jfh(n) =at') and so g(n) = "•!,n>, then we have 

0{1) 
d5v 

uniformly /Of' z 2, 11 .;i. 
PROOF. From Lemma 3.1, we have 

= -zE*-
d>z d<z 

== - + o{1) 
d<z 

= 
d>z 

So it is enough to show that 

E a(d){!} = 0(1) for v'i $ y $ z. 
<d<z d d "- -

We choose k such that 1 $ k $ ! and in < d $ f, the function {a} is 
monotone. Therefore we have 

L (by Lemma 3.7) 
ifr<d$f z 
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Now summing up fork in 1 k get 

E = E k) 

= 
= 0(1) (since 'II vz) 

which proves the lemma. 
§ 4. PROOF OF THEOREM 1. 

We take h(n) = "t'1. Therefore from Lemma 3.6 and 3.9 we have 

o:(f)+O(N) (4.1) 
L..- L..- e e 2 (e q) L..- / 2 
n=l 1 · 

(J,t)=l 

for q ../N,{J q and 'II= (NJN-)9(= O(N)). Since 

we have 

Eo:<;>= O(L = o(!), 
t>'- I t>'-1 'II -c. -e 

e:Sv 
< NE l<t)l I i I 

e$11 < !!:""' (e,q) 
V L..- e 

e<v 
= O(N) . (4.2) 

Therefore from (4.1) and (4.2) we have 

II o:(p) o:(#) ""' o:(e) 1 /3 L..,Ro(nq+/3) = N( (1+-::2+--::4+· · ·)) L., -(e, q)( 2-{ -( ) } )+O(N) 
n=l pjq y p· e e,q 

(4.3) 
Now, we assume q = IIP . .B = II p = t where z = [llog N]. Hence 

p<.c 2<p$.c 
q From (4.3), we- have 
N 

:;Ro(nq+{J) = 

(4.4) 
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We note that, if 2 I e, then i -'- { = 0. H 2 ,f' e, then a( e) = 1 and 
j - { tf!qy} = }. Therefore we have, 

L {tfv}) L. · i 
PI•* Pit 

From (4.4) and (4.5), we have 

PI•*Pit.2<f"• 

•It 
:lf'e 

log z 
loglog N (4.5) 

N 1 
LRo(nq + /3) N((2) · 2zoglog N + O(N) 
n=l 

which implies 
Ro(z) = n+(loglog z) 

and hence from Lemma 3.8, we have 

Rt(z) = O+(z loglog z) 

which completes the proof of Theorem 1. 

§ 5. PROOF OF THEOREM 2. 
We take h(n) = ''t'· From Lemma 3.4, we have 

RI(z) - Ro(z) =! EJ'(d) + L I'( d) - _.!:._ Ll'(d)( {!}- {! }2) 
Z 2 d>z d2 2 d 2z d d 

We consider the sum For the range d ze-c..;r;;;, we use 
d<z 

trivial estimate and get-

L I'( ze-c..;r;;; 
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For z d we notice that Hl is monotonic in m < d I 
for any k such that 1 k 5 Therefore we get 

Now summing up over all k's in 1 k ezp(cy'l(igi), we get 

L < ezp( -c2../log z). 
z 

The sum LJL(d){j}2 can be treated similarly. Other sums are easy to deal 
d<z 

with. Hence the Theorem 2 follows. 
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