A note to a paper by Ramachandra on transctndental numbers - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 1983

A note to a paper by Ramachandra on transctndental numbers

Résumé

In this paper, we apply a combinatorial lemma to a well-known result concerning the transcendency of at least one of the numbers $\exp(\alpha_i\beta_j) (i=1, 2, 3; j=1, 2)$, where the complex numbers $\alpha_i,\beta_j$ satisfy linear independence conditions and show that for any $\alpha\neq0$ and any transcendental number $t$, we obtain that at most $\frac{1}{2}+(4N-4+\frac{1}{4})^{1/2}$ of the numbers $\exp(\alpha t^n)~(n=1,2,\ldots,N)$ are algebraic. Similar statements are given for values of the Weierstrass $\wp$-function and some connections to related results in the literature are discussed.
Fichier principal
Vignette du fichier
6Article3.pdf (1.84 Mo) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-01104259 , version 1 (16-01-2015)

Identifiants

Citer

K Ramachandra, S Srinivasan. A note to a paper by Ramachandra on transctndental numbers. Hardy-Ramanujan Journal, 1983, Volume 6 - 1983, pp.37 - 44. ⟨10.46298/hrj.1983.98⟩. ⟨hal-01104259⟩
65 Consultations
586 Téléchargements

Altmetric

Partager

More