Some remarks on the mean value of the Riemann zeta-function and other Dirichlet series 1 - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 1978

Some remarks on the mean value of the Riemann zeta-function and other Dirichlet series 1

Résumé

The present paper is concerned with $\Omega$-estimates of the quantity $$(1/H)\int_{T}^{T+H}\vert(d^m/ds^m)\zeta^k(\frac{1}{2}+it)\vert dt$$ where $k$ is a positive number (not necessarily an integer), $m$ a nonnegative integer, and $(\log T)^{\delta}\leq H \leq T$, where $\delta$ is a small positive constant. The main theorems are stated for Dirichlet series satisfying certain conditions and the corollaries concerning the zeta function illustrate quite well the scope and interest of the results. %It is proved that if $2k\geq1$ and $T\geq T_0(\delta)$, then $$(1/H)\int_{T}^{T+H}\vert \zeta(\frac{1}{2}+it)\vert^{2k}dt > (\log H)^{k^2}(\log\log H)^{-C}$$ and $$(1/H)\int_{T}^{T+H} \vert\zeta'(\frac{1}{2}+it)\vert dt > (\log H)^{5/4}(\log\log H)^{-C},$$ where $C$ is a constant depending only on $\delta$.
Fichier principal
Vignette du fichier
1Article1.pdf (2.81 Mo) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-01103723 , version 1 (15-01-2015)

Identifiants

Citer

K Ramachandra. Some remarks on the mean value of the Riemann zeta-function and other Dirichlet series 1. Hardy-Ramanujan Journal, 1978, Volume 1 - 1978, pp.1-15. ⟨10.46298/hrj.1978.87⟩. ⟨hal-01103723⟩
139 Consultations
888 Téléchargements

Altmetric

Partager

More