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SOME REMARKS o·N THE MEAN VALUE OF 
·:tHE RIEMANN ZETA~ FUNCT,ION AN-D 

OTHEJf DIRICHLET SERiES-. I .. 

By K. RAMACBANDilA 

I I. , lnttooductlon 

Io the Jast section of my paper - [ 2 ] , I raised some 
questions on the 'mean value of generalised Dirichlet series. It 
looks too ambitious unless we limit ourselves to Dirichlet 

00 ' 
series F (1) :::= ~a. n-• (a :::= t1 + it) and thllt too with some 

. n-1 · · _ · -
restricdone~ · ·. We: do a:ot claim to solve all the ptoblems raised. 
Let F (.r) be convergent absolutely -so mew hero in the co.mpJu 
plane and let F (s) admit an analytic continuation ·in 
t1 > l , t ;;;.. -co and there F (s} :::= 0 (tA ). If t1 1 is. large 
eQough, F (s) is zero free in , > t1 1 and we define ( F (s) )111 

(for ~Y positive rea) number 2k) .as the analytic continuatioD 
of (F (s) )•" .(!" ;;;.. t1 1) aloog Jines parallel to the real axis. 
(If sucb line(contain a zero of F (s) we do not define (F (1) )It 

ori such lines). Let S be a positive constant not exceeding yl,s 
and m a non:Qegative integer. Let T > T0 (lf) · be a real 

v'riable and 11 a real variable suhjec(to (fog T)- 8 · ~-· H <. _T. 
lml)osing the conditions s < 2k < s-• and 0 ...; 1rl < s~l .we 
detinrd'or u > 1, · 

~- {t1) = _!_ ·j'+~ I d"' (F (s))2k ., d t. 
. H T ds"' _ 

Our main probiem is to study lower bounds for Q (u). The 
only known progress so far, in this. direction is a theorem of 
l1;1gham which gives for fixed , > l and fixed 2k (0 < 2k <: 4, 
m. = 0) an asymptotic fofmllla for Q (t1) in the special case 
F ($) = t (s), " = T~ lngham',s p_coof was complicated and 
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Davenport gave a simpler proof of Ingham's Theorem (fo. 
references see [ 5] ). Our first object in this note is to give in 
$ 3, a satjsfactory lp"'~:;r bound for max Q (u.) as q runs over 

log log H 
all real numbers ~ i + ------------ ---. However our proof of . , log H · . 
lower bound depends very much on the existence of an •• Euler 
product" for F (sl. (The- Euler product conditioft is general 
enough to include the case when F (s) is the zeta-function and 
Heeke L-series of algebraic number fields). From such a 
theorem we can also get satisfactory lower bounds for Q (l) as 
will be seen. Two simple samples of our general results 
(subject to the condition 2k > 1) are 

} JT+H 2k kt .· -C 
i· (*) H ~ T I tU+it) I dt>(logH) (lagiogH) 

1 JT+H & . -C 
(**) H r I t' <i+it) I dt > (l?g H)

6 
(log log H) _ 

where C is a constant depending only on ~._ Our next .object 
is to deal (in § 4 and § 5) with the case when F (a) has no 
Euler product. Here we are forced, for lack of better ideas; to 
limit etuselves to ·the case 2k = I. To compensate -for the 
generality the lower bounds .we obtain for Q (u). are. not so 
satisfactory, but they are still, I hope, of some interest. 

The problem of upper bounds for Q (u) seems hopelessly 
difficqlt. E~en with the assumption of Riemann hypothesis jt 
is not clear how to improve the trivial inequality 

1 f2T l 
, (***) T r I t Cl + it) I dt = 0 ~ (log T) ). 

Foot-Note : The publication of this paper which was ready 
by the middle of 1977 was delayed ·due to 
various reasons. In the meanwhile I have 

I 
replaced (log IogB)..;' in (*) and (**) by C •, 
Next I have replaced 0 ( (log T)t) by 0 ( (logl")l) 
in (***) uhconditionally. · These (and other) 
results will appear in papers II and UI with 
the same tide as the present paper. 
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§ 2. Notation 
., ' 

The letter C with or without subscriptadenotes a positive 
.ct>nstant depending only on a The letter K with or· witbollt 
~~bscripts denotes constants to be chosen later approp'riately 
in a proof. At so the constant C may not be tl:J.e ·same at each 
occurrence. 

§ 3. The case of' Euler produd 

:tet in· tt >.J. f, (s) ,oe d.efined by 

F (s) ..... · ~ (~ ·~ ip~).)-a,. (p runs. over allpdmos) 

where { x (p) } ancd { ap} are bounded sequences of complex 

numbers, and t x (p) 1 < p i for every ~rime p. We assume 
eitlier of the foUowing conditions on F (s). 

(i) · There exists a constant Po such that wh,enever a~ ~ 0 
and p >Po we have I a,. I ;;.. a, where a is a positive constant. 

. ( ' I X (p) 111)-lq,J . . ' . 
Ft.Ktller the functl~n ': l - -P' - . . whtch ts analyttc 

iri' ·.q: > 1 can be c6ntinued analytic~lly i,n a neighbourhood of 
s :.1 l and has a simple pole at s = I. 

(ii) Suppose that uu -+ l + 0, ( 'rt (• + 1 
x (p~:~~ I')) 

, ' p 

( 
1 ) b, (. ' 1 ) b, 

{" - tr ues. oetween log u :.... l and log u _ l 

where a > 0 and ,b 1o h2 a're tbreo real co~staats. 
We can now state 
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Theorem I 

With the notation explained already, 

max Q (u)>(log H)•k•••t (log log H) -c 

1 
log log H 

u;;;;, • + log H 

where C is a positive constant, and m1 - m or min (m, 1) 
according as we have (ii) or (i). 

As a corollary we can deduce the results for ?; (! + it) 
quoted in the introduction. More generally we have 

Theorem 2 

Let L fs) denote either the Dedekind zeta-function or the 
Heeke L-series of an algebraic number field of degree · n and 
according as it is Galois or not we put a = n or 1 and also 
m1 = m or min (1, m). Then we have with 2k;;;;.: 1, 

1 JT+H 
H r I L (i +it J2k dt>(log H)•k•(log log H)-c 

1 JT+H ( ) o 
H r I L m (!+it) I dt >(log H)&+m 1 (log log H)-c 

where C is a positive constant. Further the condition 2k ~ 1 is 
unnecessary if we assume the hypothesis that L (SI r4 0 for 
a> l· 

Remark : Theorem 2 gives an improvement on theorem 3 
of my paper [ 3 ]. It will be seen later that m 1 can also be 
replaced by m1 = max (m~o mn- 1). 

Deduction of Theorem 2 from Theorem I 

Let F(.s) = L (s). We put s = u +it, w = u + iv, where 
a is the number at which max Q (u) is attained. We limit 
ourselves to the case 2k > 1, m = 0 or 2k = 1, m = 1. The 
proof in both the cases are similar and we consider the first 

H 3H 
case 2k ;;;a. I, m = 0. We impose T + 4 .s;;; t .,;;; T + 4. 
If now b is an odd positive integer which is fixed to be a large 
integer depending on a. we have by Cauch) 's Theorem 

1 f . (W-s)2l> dW 
F(s)-

2
-. F(W) e W-
~~ -s 

R 
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where R is the rectangle with corners i + i (T + H), l + iT, 
_ 2 + iT, 2 + i (T + H). Because b is large we can check that 
the horizontal portions contribute a bounded quantity to the 
integral. The same is trivia!ly true of the line u = 2. Thus 

( I (W-s 2b dW I )2k -1 F(s) 12k=0 ( f F(W) e J W-s + 1) 

U=t 

=0(1+ uft I tF(W)2k e(W-s)2b :~s I 
( I (W-s)2b dW I )2k-1) J e W-s 

U=t 
Theorem 2 now follows on integrating with respect to s and 

log log H 
also using the fact that u - t > log H . We have to 

remember that if the field is Galois, condition (ii) is satisfied ; 
otherwise the condition {i) is satisfied. 

To prove Theorem 1, we assume that it is false with C = I. 

We now prctceed to prove by a series of lemmas the truth 
of the theorem for some C > 1. We can certainly choose the 
iatter constant and this would prove the Theorem 1. Accord
ingly we begin with 

Lemma I : We have 

max J J-T+H ok2 +m 
Jog Jog H jj r iF(u +it)l 2kdt<(logH) log IogB_ 

u:>!+ log H 

Proof: Trivial since, for 

0 .;;;;;; j .;;;;;; 8- 1 
, I ~~~ (F (2 + it)P J is bounded. 

Lemma 2 : The maximum of 1 F (a + it) 1 taken over all 

2 log Jog H 
u > l + Jog H , T+I...;t.;;;;;T+H-1, does not exceed H 2

• 
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Proof: Follows from the fact 1 F (s) 12k is subharmonic. 
However we supply a proof. · · If F(s) ~ 0 in I s -.: s0 1 ..;;; r 

. 1 f~'lt iO 
we have log I F (s0) I = 2 'It .· log 1 F (s0 + re ) I dO. 

0 

The first quantity is less than the second if F (s0 = 0 
Assuming now F (s0) ':F 0 and defining 

·('• - (P - _s_ 0 ) (s - s0)) · 
tp {s) = F (s) 'It (s - P) r 

where P runs over all tbe -.:eros of F (s) in I s - so I < r, we 
see that log I F (s0) I .;;;; log I tp (S 0 l I and that on I s - S 0 I 
= r we have I F (s) 1 = 1 tp (s) 1 • This proves 

2n 
1 . iQ 

log I F (s0 ) I ..;; 
2
n J log I F (s0 + r e ) I dO. 

0 

This gives easily 

log I F (s0) I ..;;; n 
1
, 2 J log I F (s) I dv 

IS-sol<r 

where dv is the element of area of the disc. We multiply this 
by 2k and apply the arithmetico-g·eometric inequality (in the 
limiting form to suit integrals) and we obtain 

1 
I F (so ' I 2

" .;;; -. n r 2 f IF(s)l 2"dv . 

ls-s0 i<;r 

log log H · 
By taking a suitable radius say log H we get the lemma . 

Lemma 3 : Let N (cl., T;, T 2) denote the number of zeros of 

( 
31og log H) 

F (~) in a ::> cl. . cl. > l + log H , and T 1 < t..;; T2 · 

Then ifT + (log H)8 ..;; t < T + H- (log H)B, 

N (cl., t, t + I) ..;; (log H)•. 
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Pror.>f: Follows from Jensen's inequality 

(see page 126 of [ 6] ) 

r 2'R' 

f ~(!) dx = _!_ J log 1 F (2 + it + re ie) I d9 
X 2'R' 

0 0 - log I F (2 + it) I, 

where n (x) denotes the number · of zt:ros of F (s) in a 
disc of radius x with centre 2 + it. We have to select a 
suitable r and use Lemma 2. Note that if 0 < X1 < r 
we have 

r 

f 
n (x) 

dx > n (x1) log 
X X1 

r 

0 

Llmma 4: For 

3 log log H 
ol. ;;;.. ~ + T = T + (log H)B, 

~ log H ' 1 

T2 = T + H - (log H)8 , 

we have N (ol. . T,, T2) < H 1 - C 1 (c:l - !) (log H)C2 ; 

Proof: We select a "well-spaced" system of zeros 
connected in N (cl, T,, T,) and proceed to · estimate their 
number by the zero detecting function F (s) MH (s) - 1 where 
MH (s) is the sum of the first H terms of the Dirichlet series for 
(F IS) )- 1

• Note rhat if ~, (s) is o.he zero detecting function in 
question and Re s = 1 then 

2 1t i f ¢ 1 (s + WJ r (WJ xw dW 

Re W=2 

is a very good approximation to ~~ (s) if we set X= HC3 

where Cs is a large constant. Fairly routine considerations 
lead to the lemma. (An excellent reference to our ideas of 
deducing ''density estimates" which was also found by · 
Galhigher in a more perfect form is Gallagher's paper [ 1 ] ). 
In the proof we have of course to use Lemma 1. · 
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K 1 log log H . 
lemma S : Let now ~ > g£0 = l + Jog li where K~ 

is a large cortstan.t. Then. N(r:l., T1 , T.) < H .(logH)-K' 
where K. -+ex> as K 1 -+ oo. (Hereafter Th Ta will be as in 
Lemma 4 and g£0 as in this Lemma). 

Proof: This lemma is a Corollary to Lemma 4. 

We next divide the . t interval T 1 E;;; t.;;;;; Tz into equal 

intervals of length (log H) Ka (K3 ;;;;;;. 10) ignoring a small bit 
at one end. Let 11 run through those intervals which do aot 

K 1 log log H 
contain a zero in a ;;;. 1 + 

1 
H. and / 2 the rest of the 

. og 
intervals. Let 13 run through the. intervals I 1 with t intervals 
of length (log H)2 removed both above and below. Plainly 
the intervals / 3 cover the interval T1 ..;;; t .;;;;; T2 except certain 

bits of total length not exceeding H (log H) - Kz 

+ H (log H)2 - Ka • We put s 0 = r:l. + it { cl fixed and 

· log lug H) 
;;;. clo . + ~ H- and set out to obtain an asymptotic 

formula for 

Ql (cl) = ~ f I F(s0 ) 12k dt. 

We prove 

lemma 6 : Let K2 

Is la 

log log H 
K 3 and g{ > g{() + log H where 

Then we have, 

ao - 2cJ.. C • -I K2 

Q 1 ' cl) = H l \ dk (n) 12 n +O(H(logH) ) 
n=l 

C4 - iB (g{ -cl.o 
+O(H(IogH) H ), 

OS 

where d~t (n) are defined by the expansion (F(s))k ., ~ dtc {n) n-s 
n=l 

valid in u > 1. Also Ka -+ oo as K1 -+ oo • 
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Proof: The proof of this lemma is nearly standard. We 
will merely sketch the proof. For t in !3 we have with 

J. 
X= H 4 and the notation introduced already, 

00 X 

F (s0) = P (t) + E, P (t) = ~ dk (n) n -so e 
n = I 

I f dW where £ = 
2

-if-i (F(s0 + W))k f (W+l)Xw W + 0 (H- 10
). 

ilmWi,;;;;; (logHP, Re(W+oO=olo 

From Lemma : .~ fl £f•dt = O(H(IogH) C5 x- i(o( -olo).) 
13 h 

Next we note that I(F(s0))k i2 = 1P(tJI 2 +0(1 (F(s0))k- P(t) \2 ) 

+ O(i(Fs0)- P(t))P(t)l). 
Hence 

~ f I F (r0) i2k dt = ~ f 1 P (t) !2 dt + E' where 
Is l2 13 I, 

T+H 

E'=o(2 J/EFdt+(flEi 2dt)! ( 2fiP(t) !2 dt )i). 
Is h T Is Is 

T+H C5 
It is easy to see that f 1 P (t) 12 dt=O(H(logH) ), and 

T 

T+H C5 
.f I P (t) 1

4 dt = 0 (H {log H) ) and so the 0-term is 
T 

C., -i (ol-.lo) 
0 (H (log H) X ). Also 

T+H c.-lK2 
~ f IP(t)l 2 dt = f 1P(t)l2 dt + 0 (H(log H) ), 

1a Is T 

and 

T+H T+H -s0 f I P (t) 12 dt = f J ~ dk (n) n 12 dt+O(H-IO) 
T T n<;X(IogX)2 

and this by standard arguments (see for instance Lemma 9 
below) is 
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2n 

(H + 0 (X (log X)3J} 2> d" (n) 12n -
2

cl e ~ X + 0 (H 1
0) 

n<;;X ( logX)2 · 
00 ~ 

Let s = Lld~c(n) 12 n. -2cland sl = _2,'Jd~r.(n);2 n -
2
cl e- X 

n= 1 n..;X(IogX)2 

n 

Then using 1-e :-X =o(;·)forn.;;;;X and 0(1) for n>Xwe have-

(
I ~ 1-2cl "' -2cl) S-S1 = 0 X L.,l dk (n) \2 n ~ L.,\dk (n).l' n 

n~X n;;;;;.X 

i-2cl c4, 
= 0 (X (log H) ). 

This proves Lemma 6 .• 

Lemma 7: In case (i) we have 

. . .ak 2 
( 1 )bzk1 

and in case tii) we have S (cL- U is >> log c:l. -! and 

( 
1 )b k2 << log cL- i . 1 • 

Proof: We leave thi1 as an exercise to the reader. 
I 

· Lemma 8 : Let f (x) be m times continuously differentiable in 
the interval of the integration below. Then for any positive 
number d we have, 

f(x)- (~) f(x +d)+('~ ).t(x + 2d) + ... ... 

+ (- J)in (: )t(x + md) 

d d d d (m) · . 
'""'(-l)m f f f ... f f (x + u, 4- u. + .. , .. Um) du1 ... du,. o o o o· · 

h (m ) {m ) b. . I ,n; '· . w ere \ 1 , \ 2 , ...... are momla coe1J'c1ents. 
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Proof: This can be proved by induction on m . Details. 
arc left to the reader. 

From Lemmas 6, 7 and 8 we can deduce Theorem I aS: 
follows. We- first assume condition • ii •. Define: 

K., Jog Jog H 
cJ. . = .l + --

1 
_ H ___ and cl. • . ... .. . .. .... . , elm+ I by eli = 

. · • og ~ 

(j-1) (log log H)C.; . 
cl.1 + JogH IJ = 2 . .. .. . ,m+lJwhereC6 isa: 

large .constant. Taking K4 a large constant we see · that 
1 ak 2 +m -C7 

H Qt (o/. 1 ) > (log H1 (log log H) and this leads t~ 

Theorem 1 with C = max (1, C7), in case m = 0. If m;;;. 1, 
we see that Q 1 (cl. d dominates Q 1 (cl.i ), (.i ;;;. 2). 

(log lo.gH) C6. 

So taking /(cl.) = (F(cl.+it)) 2k, x = ol.., d = - iog_H __ 
we see that 

2 J I /(cl.d ·- (~ )!(elz) + (~ )!(els) + 

d d (m) 
< f ······ f ( ~ f If (c:£ 1 + u 1 + ... +um) I dt) dul···dum -

0 0 la !3 

This shows that the max Q, (u) H -1 and so of Q(u) io 
log log H akz + m . - Ca, 

" ;;;;. l + log H exceeds (l <)g H) (log log H) 

and this proves Theorem 1 with C = max (1, C8). 

Next we prove Theorem 1 subject to the condition (i) . 
The case m = 0 can be disposed off as before. Let m > 1 and
the theorem be false with a large constant C. Then in addition 
to Lemma I we also have 

max 

log log H 
a> l + 

log H 

d 
(F (s) )2k 

ds 1. dt = 

. ak2 +m 1 
0 ((log H) (log log H)-C) -
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We choose clt and c£2 as before and we have 

~ f ( I I ( cl d 1-1 /( clz) I ) dt ~ 'J. f 1./ (cl 1) - I (cl?.) I dt 
~~ ~~ 

· ak2 +m 1 -J -C9 
Here the left side exceeds H (log H) . (log log H) -

. . . . ak2 + m 1 - I CG- C 
wh1le the nght s1de IS O(H (log H) (log log H) ) 

which is a contradiction if we choose C = Cr. + C9 + I. This 
proves Theorem I with C = Cr. + C9 + I. 

Before leaving this section we remark that if instead of 
condition (ii) we are given th at the product 

-'It ( I X (p) a, 1 2 
) . - a ' ( I )b 1 

1 + --- 9 - - hes between (u - D . log ~ 
p P"IT u- 2 

.and (11 - n- a ( Jog u ~ i y2
' where 

.a' > a> 0, b 1 , b. are four real constants then we can conclude 
ak•-t m:J(a')-• 

max Q (11) > (Jog H) (log log H)-c. 

log log H 
~;;;<>! +----

log H 

This explains the second part of our rem ark below Theorem 2 
since for non-Galois number fields we can take a' = n. 

§ 4. The case of no Euler product : In this and the next 
·section we assume instead of the Euler product a condition of 
the type, ~ I a" 18 -= 0 (x (log xr) where k' is a positive 

n.;;;;x 

-constant and x > 2. (The condition can be relaxed, but we 
do not want to go into such questions). The main result of 
this section is 

Theorem 3 Suppose that as 11-+j + 0, I F(211) I exceeds 

( 11 ~ 1)a (tog 11 ~ 1)b3 
where a > I and b3 are two real 

constants. Then with 2k = J, m = 0, we have, 

T+H 
_Hl J a-1 - C 

I F (i + it) I dt = Q (i) > {log H) (log log H) 

T 
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Proof: It suffices to pr~ve that · max Q (cr) for ·· a > 
log log H a-l . -C1 .J + 

1 
H • exceeds (log H) (log log H) and og . . 

Theorem 3 follows from this just as Theorem 2 follows from 
Theorem I. (fhe constants C, K with er without subscripts 
-should not be confused with the earlier constants. Also to 
save space the proof will be o.nly sketchy). We assume that 
this is false. Lemma 2 has its analogue without modification. 

·. 2 log·, log H log log H 
We put cL 1 = i + I . H . Let cL ;;;;.. cLt + l H . , · og og 

and put s0 = cL + it. We divide the interval 
T 1 = T + (logHJB <; t.;;;; T2 = T +H -(log H)B into equal intervals 
.J of length (log H}K 1 ignoring a bit at one end. We put 

4 (s) = ~ n-•, 4- 1 (s) = ~ P (n) n-• 
Y n<Y y n<;Y 

where Y = Hi. It is not hard to prove that if ip (s) 
= 4 (1) 4- 1 (s) - 1 and M (J) denotes the maximum of 

y y 

I f> (so) I for t in J, 
_l (M (J) )• = 0 (H (log H)1 o yl- 2c() 

J 

We omit those intervals ! for which M(J) > l and denote the 
rest of the intervals by /. The number of intervals J which 

.are excluded is 0 (HYI-ic( (log H)10). If K is a sufficiently 

K log log H · 
larg~ conatant and c( = i + log H we proceed to prove 

that ~ f I F(s0) 1 dt > H(log H)a-l (log log H)-C2. 
I I 

·;o -s .. · n 
We write F(s0 )=Fy(s0)+ £y(s0)where Fy(s0) = ~On n e y 

n=l 

T+H Ca c(-c(1 
.and we have f 1 Er 1 dt = 0 (H(log H) Y ). 

T 

We can replace the integrand· 

I F (so) I by I F (s0 ).~ - 1 (s0) ~ y (s0) I without 
y y 
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disturbing the left side very much. Then we replace 

T+ H 
~ f I •• 1 dt by f I ••• 1 dt without much error· Next we-
I l T 

use the fact that the last integral is bounded below by 

T+ H 
If F (s0 ) t -1 (so) -C (so) dt 1. 

T y y y 

To see that this is >> HI F (2c() 1 (c( - !), we use the 
following lemma and some simple computations and th;·s would' 
complete the proof of Theorem 3. 

Lemma 9: If { Xn } and { y,. } are two sequences of complex 
numbers, then, · 

T oo 00 -

f ( ~ Xn n-it ) { ~ Yn nit) dt 
. 0 n = 1 n = 1 

00 

= T ~ Xn Yn + 0 (( ~ n I Xn 12 )! ( ~ n I y,. 1
2 ) !) 

n = 1 n=l n=l 

Remark. For a simple proof of this lemma see [4]. 

§ 5. Balasubramanian's remark 

Theorem 4. In the case 2k = I, m = 0 as before, we have,. 

T+H 

~f 
T 

00 -2cl.. 
where ~ 1 a 12 d(n)n 

n=.l n 
.. 

Clog log H 
cl.. = l+ H (where Cis a large positive constant) and· 

log 

d (11) is the usual divisor function. 

Proof: As before we assume max Q (u) for u > 

! + 
log log H 1 

log H does not exceed S2 S3 -
1 (Note that this is. 
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o ((log H,c•) ). Next we write sa=c:l..+it, F(.Ya)=Fr(sa)+Er,. 

co 
where Y =Hi. Fr (so) = ~ an 

· n=l 

T+H 

We have anr 

asymptotic formula for f I Fr (sa) 12 dt, and also a. 
T 

T+H 
good upper bound for f I Fr (sa) 14 dt. Using 

T 
T+H T+H ' f I Fr (s0) 12 dt<, (f l Fr (s0) I dt) • 

T T 
T+H 

(f I Fv (s0 ) I' dt)lf: 
T 

we are led to the theorem. The details are left to ~he reader. 
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