Nonlinear diffusions: extremal properties of Barenblatt profiles, best matching and delays - Archive ouverte HAL
Article Dans Une Revue Nonlinear Analysis: Theory, Methods and Applications Année : 2016

Nonlinear diffusions: extremal properties of Barenblatt profiles, best matching and delays

Résumé

In this paper, we consider functionals based on moments and non-linear entropies which have a linear growth in time in case of source-type so-lutions to the fast diffusion or porous medium equations, that are also known as Barenblatt solutions. As functions of time, these functionals have convexity properties for generic solutions, so that their asymptotic slopes are extremal for Barenblatt profiles. The method relies on scaling properties of the evo-lution equations and provides a simple and direct proof of sharp Gagliardo-Nirenberg-Sobolev inequalities in scale invariant form. The method also gives refined estimates of the growth of the second moment and, as a consequence, establishes the monotonicity of the delay corresponding to the best matching Barenblatt solution compared to the Barenblatt solution with same initial sec-ond moment. Here the notion of best matching is defined in terms of a relative entropy.
Fichier principal
Vignette du fichier
Dolbeault-Toscani2015a.pdf (1.39 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01103574 , version 1 (15-01-2015)

Identifiants

Citer

Jean Dolbeault, Giuseppe Toscani. Nonlinear diffusions: extremal properties of Barenblatt profiles, best matching and delays. Nonlinear Analysis: Theory, Methods and Applications, 2016, 138, pp.31-43. ⟨hal-01103574⟩
163 Consultations
153 Téléchargements

Altmetric

Partager

More