Meshing Meristems - An Iterative Mesh Optimization Method for Modeling Plant Tissue at Cell Resolution
Résumé
We address in this paper the problem of reconstructing a mesh representation of plant cells in a complex, multi-layered tissue structure, based on segmented images obtained from confocal microscopy of shoot apical meristem of model plant Arabidopsis thaliana. The construction of such mesh structures for plant tissues is currently a missing step in the existing image analysis pipelines. We propose a method for optimizing the surface triangular meshes representing the tissue simultaneously along several criteria, based on an initial low-quality mesh. The mesh geometry is deformed by iteratively minimizing an energy functional defined over this discrete surface representation. This optimization results in a light discrete representation of the cell surfaces that enables fast visualization, and quantitative analysis, and gives way to in silico physical and mechanical simulations on real-world data. We provide a framework for evaluating the quality of the cell tissue reconstruction, that underlines the ability of our method to fit multiple optimization criteria.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...