Fractional operators with singular drift: Smoothing properties and Morrey-Campanato spaces - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Fractional operators with singular drift: Smoothing properties and Morrey-Campanato spaces

Résumé

We investigate some smoothness properties for a transport-diffusion equation involving a class of non-degerate Lévy type operators with singular drift. Our main argument is based on a duality method using the molecular decomposition of Hardy spaces through which we derive some Hölder continuity for the associated parabolic PDE. This property will be fulfilled as far as the singular drift belongs to a suitable Morrey-Campanato space for which the regularizing properties of the Lévy operator suffice to obtain global Hölder continuity.
Fichier principal
Vignette du fichier
MOLECULES_MORREY_Levy-22_12_2014.pdf (427.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01098102 , version 1 (22-12-2014)
hal-01098102 , version 2 (05-01-2016)

Identifiants

Citer

Diego Chamorro, Stéphane Menozzi. Fractional operators with singular drift: Smoothing properties and Morrey-Campanato spaces. 2014. ⟨hal-01098102v1⟩
270 Consultations
400 Téléchargements

Altmetric

Partager

More