Asymptotic behaviour of codes in rank metric over finite fields - Archive ouverte HAL
Article Dans Une Revue Designs, Codes and Cryptography Année : 2014

Asymptotic behaviour of codes in rank metric over finite fields

Résumé

In this paper, we rst recall some basic facts about rank metric. We then derive an asymptotic equivalent of the minimum rank distance of codes that reach the rank metric GilbertVarshamov bound. We then derive an asymptotic equivalent of the average minimum rank distance of random codes. We show that random codes reach GV bound. Finally, we show that optimal codes in rank metric have a packing density which is bounded by functions depending only on the base eld and the minimum distance and show the potential interest in cryptographic applications.
Fichier principal
Vignette du fichier
Metrique_v4.pdf (318.9 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01097293 , version 1 (19-12-2014)
hal-01097293 , version 2 (13-10-2024)

Identifiants

Citer

P Loidreau. Asymptotic behaviour of codes in rank metric over finite fields. Designs, Codes and Cryptography, 2014, 71 (1), pp.105-118. ⟨10.1007/s10623-012-9716-0⟩. ⟨hal-01097293v1⟩

Collections

ENSTA
250 Consultations
185 Téléchargements

Altmetric

Partager

More