Maximal sets with no solution to x + y = 3z - Archive ouverte HAL
Article Dans Une Revue Combinatorica Année : 2016

Maximal sets with no solution to x + y = 3z

Résumé

In this paper, we are interested in a generalization of the notion of sum-free sets. We address a conjecture first made in the 90s by Chung and Goldwasser. Recently, after some computer checks, this conjecture was formulated again by Matolcsi and Ruzsa, who made a first significant step towards it. Here, we prove the full conjecture by giving an optimal upper bound for the Lebesgue measure of a 3-sum-free subset A of [0, 1], that is, a set containing no solution to the equation x + y = 3z where x, y and z are restricted to belong to A. We then address the inverse problem and characterize precisely, among all sets with that property, those attaining the maximal possible measure.
Fichier principal
Vignette du fichier
3sfsets_plagne_deroton-final.pdf (291.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01096368 , version 1 (23-02-2016)

Identifiants

Citer

Alain Plagne, Anne de Roton. Maximal sets with no solution to x + y = 3z. Combinatorica, 2016, 36 (2), pp.229-248. ⟨10.1007/s00493-015-3100-4⟩. ⟨hal-01096368⟩
228 Consultations
145 Téléchargements

Altmetric

Partager

More