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MAXIMAL SETS WITH NO SOLUTION TO x+ y = 3z

ALAIN PLAGNE AND ANNE DE ROTON

Abstract. In this paper, we are interested in a generalization of the notion of sum-
free sets. We address a conjecture first made in the 90s by Chung and Goldwasser.
Recently, after some computer checks, this conjecture was formulated again by Matolcsi
and Ruzsa, who made a first significant step towards it. Here, we prove the full
conjecture by giving an optimal upper bound for the Lebesgue measure of a 3-sum-free
subset A of [0, 1], that is, a set containing no solution to the equation x+y = 3z where
x, y and z are restricted to belong to A. We then address the inverse problem and
characterize precisely, among all sets with that property, those attaining the maximal
possible measure.

1. Introduction

Almost one century ago, on his way towards Fermat’s Last Theorem, Schur [15] was
led to study sets of integers not containing a triple of elements with one being the
sum of the two others. This was a pioneering work in Ramsey theory but at the same
time the study of such sets, now called sum-free, was seminal in combinatorial number
theory. Since then, sum-free sets have been widely investigated (see for instance [17])
and generalized to further contexts.

One possible generalization is the study of sets of integers without solutions (x, y, z)
to an equation of the form ax + by = kz (with integral a, b and k) that Lucht [8]
began in 1976. Ruzsa [12, 13] studied more general linear equations and introduced a
new terminology by distinguishing between what he called invariant and noninvariant
equations.

In the present paper, we shall only deal with k-sum-free sets (k is a positive integer).
A subset of a given (additively written) semi-group, say, is said to be k-sum-free if it
contains no triple (x, y, z) satisfying the equation x + y = kz. Invariant equations,
which correspond here to the fact that the sum of the coefficients of the unknowns in
the forbidden relation is equal to zero, lead to the existence of trivial solutions – as
appears for instance in the case of 2-sum-free sets (since x+ x is equal to 2x, whatever
x is) – which have not to be considered and lead to special developments: 2-sum-free
sets, which are also and in fact mainly known as sets without arithmetic progressions of
length 3, are of great importance and their study is central in additive combinatorics.
We simply mention [14] for the latest development on the subject which goes back at
least to Roth [10]. Here, we restrict ourselves to the noninvariant cases, that is, k is
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supposed different from 2. In this case, the problems which appear are of a different
kind.

The very basic question to maximize the cardinality of a set of integers included in
{1, 2, . . . , n} having no solution to the equation x + y = z (sum-free sets) belongs to
the folklore and is easily solved (see for instance [4] or [5]). One cannot select more
than dn/2e integers with the required property, and this is optimal. Interestingly, for
a general n, there are two kinds of extremal sum-free sets (see Theorem 1.1 of [4] for a
precise statement): the combinatorial one, namely the upper-half, {d(n+ 1)/2e, . . . , n}
for which the impossibility to solve the equation follows from a size condition (the sum
of two elements in this set is larger than n, thus outside the set); and the arithmetic
one, in the present case the set of odd integers, for which a modular condition prevents
from the existence of a solution. Not only in the case of sum-free sets of integers is this
dichotomy emerging. In all these types of questions, when asked in a discrete setting,
this typology is subject to appear.

For k = 3 (and n 6= 4), Chung and Goldwasser [4] proved Erdős’ conjecture that
dn/2e is the maximal size of a 3-sum-free set of positive integers less than n. They also
prove, at least when n ≥ 23 (see Theorem 1.3 in [4]), that the set of odd integers is the
only example attaining this cardinality.

For k ≥ 4, Chung and Goldwasser [3] discovered k-sum-free subsets of {1, 2, . . . , n}
with a size asymptotic to

∼ k − 2

k2 − 2

(
k +

8

k(k4 − 2k2 − 4)

)
n

as n tends to infinity. This was obtained thanks to an explicit construction of three
intervals of integers. They additionally conjectured that this was the actual exact as-
ymptotic maximal value. This conjecture was finally settled by Baltz, Hegarty, Knape,
Larsson and Schoen in [1] (see also [6] for an alternative proof). These authors addi-
tionally proved an inverse theorem giving the structure of a k-sum-free sets of this size :
such sets have to be close from the set composed of the three above-mentioned intervals.

In fact, Chung and Golwasser managed to predict the maximal size of a k-sum-free
set of integers less than n by studying the continuous analog of the problem in [3]; in
other words by introducing the study of k-sum-free subsets of real numbers selected
from [0, 1]. Indeed, a k-sum-free subset of [0, 1] leads, after a suitable dilation, to a
k-sum-free set of integers (but it is important to notice, this set will be mandatorily –
in the typology mentioned above – of a combinatorial nature).

We thus arrive to the question of determining the maximal Lebesgue measure – de-
noted thereafter µ – of a subset of [0, 1] having no solution to the equation x+ y = kz.
The case k = 1 is easy and, as mentioned above, the cases k ≥ 4 were solved in [3].
However, the case k = 3 was left open and remained the only one for which the optimal
asymptotic density was unknown. Nonetheless, it was precisely investigated and the set
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(composed again of three intervals)

(1) A0 =

(
8

177
,

4

59

)
∪
(

28

177
,
14

59

)
∪
(

2

3
, 1

)
which does not contain a solution to the equation x + y = 3z, was identified in [3] as
playing an important role in the question. Notice that its measure is equal to 77/177 =
0.4350 . . . In the sequel, we shall call A1, . . . ,A7 the seven sets defined as the union of
A0 and three points, one end-point of each interval appearing in the definition of A0,
except (8/177, 14/59, 2/3). These seven sets are 3-sum-free. The quite precise following
conjecture was then formulated in [3]:

Chung-Goldwasser Conjecture . Let A be a measurable 3-sum-free subset of [0, 1].
Then

µ(A) ≤ 77

177
.

Moreover, if µ(A) = 77/177 and if A is maximal with respect to inclusion among the
3-sum-free subsets of [0, 1], then A ∈ {A1, . . . ,A7}.

Recently, Matolcsi and Ruzsa [9] led several computer-aided checks supporting this
conjecture. Mainly, they made the first breakthrough towards the first part of this
conjecture by showing the following theorem.

Matolcsi-Ruzsa Theorem . Let A be a mesurable 3-sum-free subset of [0, 1]. Then
its measure satisfies

µ(A) ≤ 28

57
= 0.49122 . . .

This result, the first one to prove a strictly less than 0.5 upper bound for 3-sum-free
subsets of [0, 1], is very noticeable because it shows in particular that in the case of
3-sum-free sets, contrary to what happens in the other cases, the maximal size of such
a subset in [0, 1] is not the analog of that of a k-sum-free subset of integers (let us
recall that such a set has a density 1/2). This illustrates indeed the fact that the only
known 3-sum-free set of integers of maximal size is the set of odd numbers, a set of an
arithmetic nature which does not possess a ‘direct’ continuous analog (contrarily to sets
of combinatorial nature). Well, one could try to fatten up the set of odd numbers in
{1, 2, · · · , n} and normalize it to obtain a 3-sum free subset of [0, 1] as explained in [3]
but the measure of this set would be roughly 1/3. This is an important observation:
while such a phenomenon may occur when comparing sets with no solution (to a given
linear equation) in {1, 2, · · · , n} and in [0, 1], a recent theorem of Candela and Sisask
(see Theorem 1.3 in [2]) shows that, in the analogous case of cyclic groups of prime
order versus the torus, the discrete model always converges towards the continuous one.
Notice that a good reason for this to happen, in this discrete case, is that even sets
of an arithmetic nature can be transformed without loss of generality into sets of a
combinatorial nature with the same density: multiplying an arithmetic progression by
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the inverse of its difference transforms it into an interval. This does not happen in the
case of present study and makes the behaviour of maximal sets more difficult to handle.

In this paper, we first establish the optimal (in view of example (1)) upper bound for
the measure of 3-sum-free sets of [0, 1].

Theorem 1. Let A be a measurable 3-sum-free subset of [0, 1]. Then

µ(A) ≤ 77

177
.

We then describe the 3-sum-free subsets of [0, 1] of maximal measure, which in par-
ticular solves the inverse associated problem.

Theorem 2. Let A be a measurable 3-sum-free subset of [0, 1] satisfying µ(A) = 77/177,
then there is an i ∈ {1, . . . , 7} such that A ⊂ Ai.

The full Chung-Goldwasser conjecture is thus proved.

2. Notations and prerequisites

In what follows, we denote respectively by µ(X) and diam(X) = sup X − inf X, the
Lebesgue measure and the diameter of a set X of real numbers. We shall denote by
A+B the Minkowski sumset of two subsets A and B of R, and by α ·A the α-dilate of
A, that is {αx for x ∈ A}. Notice in particular that 2 · A is included in, but in general
different from, A+ A.

While the behaviour of µ with respect to dilation is clear since one has

(2) µ(α · A) = αµ(A),

it is more complicated for the case of Minkowski addition. The basic estimate for the
measure of the sum of two measurable bounded subsets A and B of R is a standard
Brunn-Minkowski type [7] lower bound, namely

(3) µ∗(A+B) ≥ µ(A) + µ(B),

where µ∗ denotes the inner measure (the use of this tool is made necessary by the fact
that A+B is not necessarily measurable as shown by Sierpiński [16]).

Beyond this, the best known result is due to Ruzsa.

Lemma 1. (Ruzsa [11]) Let A and B be two bounded measurable subsets of R such that
µ(A) ≤ µ(B), then

(4) µ∗(A+B) ≥ min(2µ(A) + µ(B), µ(A) + diam(B)).

In particular, one has

(5) µ∗(A+ A) ≥ min(3µ(A), µ(A) + diam(A)).
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We underline the fact that up to this lemma, the result presented in this paper is
self-contained.

We now state two more specific lemmas, due to Matolcsi and Ruzsa [9], that we shall
need in the present study. These intermediary results are not presented as lemmas
in [9], therefore, to ease the reading of the present paper, we include their respective
(condensed) proofs here. Before entering this, we note that the assumption that there
is no solution to x + y = 3z with x, y, z ∈ A can be rewritten set-theoretically in the
form

(6) (A+ A) ∩ (3 · A) = ∅ or, equivalently,

(
1

3
· (A+ A)

)
∩ A = ∅.

Lemma 2. (Matolcsi-Ruzsa [9]) Let A be a measurable bounded 3-sum-free subset of
R+. One has

µ(A) ≤ 2 supA− inf A

4
.

Proof. Since, by definition, 1/3 · (A+A) and A are intersection-free and both included
in the interval [2 inf A/3, supA], we obtain

supA− 2

3
inf A ≥ µ∗

(
1

3
· (A+ A)

)
+ µ(A)

≥ min

(
µ(A),

1

3
(µ(A) + supA− inf A)

)
+ µ(A),

in view of (2) and (5). If 2µ(A) ≥ diam(A), then we obtain

supA− 2

3
inf A ≥ 4

3
µ(A) +

1

3
(supA− inf A)

which gives the result. In the other case, we have

µ(A) ≤ 1

2
diam(A) =

1

2
(supA− inf A) ≤ 2 supA− inf A

4
,

since A ⊂ R+. �

Here is the second lemma useful to our purpose.

Lemma 3. (Matolcsi-Ruzsa [9]) Let A be a measurable 3-sum-free subset of [0, 1] such
that supA = 1, then

µ(A) ≤ 1

3
+

1

2
µ

(
A ∩

[
2

3
, 1

])
.

Proof. We define

a = inf A, A1 = A ∩
[

2

3
, 1

]
and ε =

1

3
− µ(A1)
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and refine the argument used in the proof of Lemma 2 using that the three sets 1/3 ·
(A+ A), A and (2/3, 1] \ A1 are disjoint subsets of [2a/3, 1]. This gives

1− 2a

3
≥ 1

3
µ∗(A+ A) + µ(A) + ε.

Now, (5) gives

µ∗(A+ A) ≥ µ(A) + min(2µ(A), 1− a).

In the case where 2µ(A) > 1− a, we get

1− 2a

3
≥ 1− a

3
+

4

3
µ(A) + ε,

thus

µ(A) ≤ 1

2
− 3

4
ε− a

4
,

whereas if 2µ(A) ≤ 1− a, we get

1− 2a

3
≥ 2µ(A) + ε,

from which it follows that

µ(A) ≤ 1− ε
2
− a

3
.

In both cases, we have

µ(A) ≤ 1− ε
2

=
1

3
+

1

2
µ(A1),

that is, the result. �

3. Two central lemmas

The proof of the main theorem (Theorem 1) relies essentially on the following technical
lemma.

Lemma 4. Let A be a measurable 3-sum-free subset of [0, 1] such that supA = 1. Let

a = inf A and A1 = A ∩
[

2

3
, 1

]
and define

ε1 = inf A1 −
2

3
and ε2 =

(
1

3
− ε1

)
− µ(A1).

If ε1 + 2ε2 ≤ 1/3, then one has

µ

(
A ∩

[
2

9
+
a

3
, 1

])
≤

{
1
3
− 1

6
ε1 if ε1 ≤ 2

3
a,

1
3
− 1

24

(
ε1 − 2

3
a
)

if ε1 >
2
3
a.
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Proof. We define the following three sets A2/3, A4/9 and A1/3:

A2/3 = A ∩
[

4

9
+

2

3
ε1,

2

3

]
, A4/9 = A ∩

[
1

3
+

1

2
ε1,

4

9
+

1

6
ε1

]
,

and

A1/3 = A ∩
[

2

9
+

1

3
(a+ ε1),

1

3
+

1

3
a

]
.

By (5), one gets

µ∗

(
1

3
· (A1 + A1)

)
≥ min

(
µ(A1),

1

3
(µ(A1) + diam(A1))

)
= min

(
1

3
− ε1 − ε2,

1

3

(
2

3
− 2ε1 − ε2

))
=

2

9
− 2

3
ε1 −

1

3
ε2(7)

using the assumption that ε1 + 2ε2 ≤ 1/3.
Since, by (6), the two sets 1/3 · (A1 +A1) and A2/3 are disjoint subsets of the interval

[4/9 + 2ε1/3, 2/3], one obtains, using (7),

(8) µ(A2/3) ≤ µ

([
4

9
+

2

3
ε1,

2

3

])
− µ∗

(
1

3
· (A1 + A1)

)
≤ ε2

3
.

We now prove that

(9) µ(A4/9) ≤
1

3
ε2.

If A4/9 has measure zero, there is nothing to prove. Thus we denote by c1 the infimum
of A4/9 and by c2 its supremum, and assume they are distinct. We choose a decreasing
sequence (c1(n))n≥0 in A4/9 tending to c1 when n tends to infinity and < c2 (if c1 is in
A4/9, c1(n) = c1 will do). One has in view of 1/3 + ε1/2 ≤ c1 ≤ c1(n) < c2 ≤ 4/9 + ε1/6,

1

3

(
c1(n) +

2

3
+ ε1

)
≤ c1(n) ≤ c2 ≤

4

9
+
ε1
6
≤ 1 + c1

3
≤ 1 + c1(n)

3
,

therefore

A4/9 = A ∩ [c1, c2]

= (A ∩ [c1, c1(n)]) ∪ (A ∩ [c1(n), c2])

⊂ (A ∩ [c1, c1(n)]) ∪
(
A ∩

[
1

3

(
c1(n) +

2

3
+ ε1

)
,
1

3
(c1(n) + 1)

])
⊂ (A ∩ [c1, c1(n)]) ∪

(
A ∩ 1

3
·
(
c1(n) +

[
2

3
+ ε1, 1

]))
.



8 ALAIN PLAGNE AND ANNE DE ROTON

Since c1(n) ∈ A, assumption (6) implies that 1
3

(c1(n) + A1) ∩ A4/9 = ∅ and therefore

(10) A4/9 ⊂ (A ∩ [c1, c1(n)]) ∪ 1

3
·
(
c1(n) +

([
2

3
+ ε1, 1

]
\ A1

))
,

which in turn gives

µ(A4/9) ≤ µ([c1, c1(n)]) +
1

3
µ

([
2

3
+ ε1, 1

]
\ A1

)
= (c1(n)− c1) +

1

3

(
1

3
− ε1 − µ(A1)

)
= (c1(n)− c1) +

1

3
ε2.

Letting n tend to infinity in this inequality finishes the proof of (9).
In the same fashion, if a ∈ A, one obtains

A1/3 = A ∩ 1

3
·
(
a+

[
2

3
+ ε1, 1

])
= A ∩ 1

3
·
(
a+

([
2

3
+ ε1, 1

]
\ A1

))
from which it follows

(11) µ(A1/3) ≤
1

3
ε2

and this remains true even if a 6∈ A by considering a sequence (a(n))n≥0 of elements of
A tending to a when n goes to infinity arguing similarly as in the proof of (9).

We now study separately the two inequalities in the statement of the Lemma.

First inequality.

Suppose first that ε1 ≤ 2a/3, which implies

sup

[
2

9
+

1

3
(a+ ε1),

1

3
+

1

3
a

]
≥ inf

[
1

3
+

1

2
ε1,

4

9
+

1

6
ε1

]
,

or, in other words, that A4/9 and A1/3 overlap. One then deduces from (8), (9) and (11)
that

µ

(
A ∩

[
2

9
+
a

3
, 1

])
≤ µ(A1) + µ(A2/3) +

1

2
ε1 + µ(A4/9) + µ(A1/3) +

1

3
ε1

≤
(

1

3
− ε1 − ε2

)
+ ε2 +

5

6
ε1 =

1

3
− 1

6
ε1.

And the inequality of Lemma 4 follows in this first case.

Second inequality.

Until the end of this proof, we assume that ε1 > 2a/3.
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We shall need the sets B1/3 and C1/3 defined in the following way :

B1/3 = A ∩
[

1

3
+

1

3
a,

1

3
+

1

2
ε1

]
, C1/3 = A ∩

[
2

9
+

2

9
a,

2

9
+

1

3
ε1

]
.

The assumption on the relative sizes of ε1 and a shows that

1

3
·
(

2

3
+ ε1 +B1/3

)
⊂
[

1

3
+
a

9
+
ε1
3
,
1

3
+
ε1
2

]
⊂
[

1

3
+
a

3
,
1

3
+
ε1
2

]
.

If 2/3 + ε1 ∈ A, (6) shows that the set on the left is intersection-free with B1/3 and one
thus gets

(12) µ(B1/3) ≤ µ

([
1

3
+
a

3
,
1

3
+
ε1
2

])
− 1

3
µ(B1/3) =

ε1
2
− a

3
−
µ(B1/3)

3
,

consequently

(13) µ(B1/3) ≤
3

4

(ε1
2
− a

3

)
.

Once again, the same type of arguments as the ones used to prove (9) shows that this
remains true even if 2/3 + ε1 6∈ A.

Now the inclusion

1

3
· (B1/3 +B1/3) ⊂

[
2

9
+

2a

9
,
2

9
+
ε1
3

]
and (6) show that the set on the left-hand side of this inclusion and C1/3 are disjoint
and both included in the set on the right-hand side, that is, we obtain

(14) µ∗

(
1

3
· (B1/3 +B1/3)

)
+ µ(C1/3) ≤

ε1
3
− 2a

9
.

By (3), this yields

2

3
µ
(
B1/3

)
+ µ(C1/3) ≤

ε1
3
− 2a

9
.

Then, using this and (13), we derive

µ(B1/3) + µ(C1/3) =

(
2

3
µ
(
B1/3

)
+ µ(C1/3)

)
+

1

3
µ
(
B1/3

)
≤ ε1

3
− 2a

9
+

1

4

(ε1
2
− a

3

)
=

11

24
ε1 −

11

36
a.
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We finally deduce from (8), (9), (11) and the preceding inequality, that

µ

(
A ∩

[
2

9
+
a

3
, 1

])
≤ µ(A1) + µ(A2/3) +

ε1
2

+ µ(A4/9) + µ(B1/3) + µ(A1/3)

+
a

3
+ µ(C1/3)

≤
(

1

3
− ε1 − ε2

)
+ ε2 +

1

2
ε1 +

1

3
a+

11

24
ε1 −

11

36
a

=
1

3
− 1

24
ε1 +

1

36
a

=
1

3
− 1

24

(
ε1 −

2

3
a

)
.

Hence the announced inequality. �

The second central lemma, needed for the proof of Theorem 2, deals with attaining
the bound 1/3 in Lemma 4. Here it is.

Lemma 5. Let A be a measurable 3-sum-free subset of [0, 1] such that supA = 1. We
define

a = inf A, A1 = A ∩
[

2

3
, 1

]
, ε1 = inf A1 −

2

3
and ε2 =

(
1

3
− ε1

)
− µ(A1).

We assume ε1 + 2ε2 ≤ 1/3 and a > 0. Then, µ (A ∩ [2/9 + a/3, 1]) = 1/3 implies

ε1 = ε2 = 0.

Proof. In this proof we will use freely the notation introduced in the preceding lemma.
We first apply Lemma 4 to A. The precise inequality obtained there implies that

we cannot have ε1 > 2a/3, since we would get µ(A ∩ [2/9 + a/3, 1]) < 1/3. Thus
µ(A ∩ [2/9 + a/3, 1]) = 1/3 implies ε1 ≤ 2a/3 and then

ε1 = 0

in view of the precise formula in this case.
We now turn to the core of this proof and show that

(15) ε2 = 0

and assume for a contradiction that ε2 > 0.
The definition of the sets introduced in Lemma 4 gives

µ

(
A ∩

[
2

9
+
a

3
, 1

])
= µ(A1) + µ(A2/3) + µ(A4/9) + µ(A1/3)− µ(A1/3 ∩ 44/9).

Recall that by definition µ(A1) = 1/3− ε2 and, in view of (8), (9) and (11),

µ(A1/3), µ(A4/9), µ(A2/3) ≤
ε2
3
.
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This, with µ(A1/3 ∩ 44/9) ≥ 0, shows that µ (A ∩ [2/9 + a/3, 1]) = 1/3 can hold only in
the case

(16) µ(A1/3) = µ(A4/9) = µ(A2/3) =
ε2
3
, and µ

([
1

3
,
1

3
+
a

3

]
∩ A

)
= 0,

this last equality being tantamount to saying that the intersection of A1/3 and A4/9 has
measure zero.

The function f :
(
x 7→ µ([1/3, x] ∩ A4/9)

)
is a non-decreasing non-negative continuous

function on [1/3, 4/9] such that f is identically 0 on [1/3, (1+a)/3] and f(4/9) = ε2/3 >
0. We define c̃1 as the following infimum

c̃1 = inf{x ∈ [1/3, 4/9], f(x) > 0}.

We have

(17) c̃1 ≥
1 + a

3
.

Furthermore, µ([1/3, x]∩A4/9) = 0 for any x ∈ [1/3, c̃1], whereas µ
(
A4/9 ∩ [c̃1, c̃1 + η]

)
>

0 for any η > 0.
We choose a real number η such that 0 < η < min(a, ε2)/3. Let v be any element of

[c̃1, c̃1 + η] ∩ A4/9. We have, using (17),

1

3
< v < c̃1 + η < c̃1 +

a

3
≤ c̃1 +

(
c̃1 −

1

3

)
< c̃1 + 2

(
c̃1 −

1

3

)
= 3c̃1 −

2

3

from which it follows that

1

3

(
v +

2

3

)
≤ c̃1 ≤ c2 ≤

4

9
≤ 1

3
(v + 1),

on recalling that c2 = supA4/9. Going back to the proof that µ(A4/9) = ε2/3 in Lemma
4, the preceding inequalities allow us to obtain

A4/9 ⊂ (A ∩ [c1, c̃1]) ∪ (A ∩ [c̃1, c2]) ⊂ (A ∩ [c1, c̃1]) ∪
1

3
·
(
A ∩

(
v +

[
2

3
, 1

]))
.

As previously, assumption (6) yields

A4/9 ⊂ (A ∩ [c1, c̃1]) ∪
1

3
·
(
v +

([
2

3
, 1

]
\ A1

))
.

But the sets A4/9 and 1/3 · (v + ([2/3, 1] \ A1)) have the same measure ε2/3 while
A ∩ [c1, c̃1] has measure zero. We therefore deduce that, for any v in [c̃1, c̃1 + η] ∩ A4/9,

(18) A4/9 =
1

3
·
(
v +

([
2

3
, 1

]
\ A1

))
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up to a set of measure zero. Choosing u 6= u′ in [c̃1, c̃1 +η]∩A4/9 (such u and u′ do exist
since µ ([c̃1, c̃1 + η] ∩ A) 6= 0), and applying (18) consecutively to v = u and v = u′, we
get, up to sets of measure zero,

u+

([
2

3
, 1

]
\ A1

)
= u′ +

([
2

3
, 1

]
\ A1

)
.

This implies that

ε2 = 3µ

([
2

3
, 1

]
\ A1

)
= 0,

a contradiction. Assertion (15) is therefore proved. �

4. Proof of Theorem 1

Let us begin with a simple consequence of Lemma 4.

Lemma 6. Let A be a measurable 3-sum-free subset of [0, 1] such that supA = 1 and
µ(A) ≥ 5/12. Then,

µ

(
A ∩

[
inf A

3
+

2

9
, 1

])
≤ 1

3
.

Proof. Define ε1 and ε2 as in the statement of Lemma 4. The assumptions and Lemma
3 show that

5

12
≤ µ(A) ≤ 1

3
+

1

2
µ

(
A ∩

[
2

3
, 1

])
=

1

2
(1− ε1 − ε2),

or, equivalently, ε1 + ε2 ≤ 1/6, which implies ε1 + 2ε2 ≤ 2(ε1 + ε2) ≤ 1/3 and makes it
possible to apply Lemma 4, which in turn concludes the proof. �

We can now prove Theorem 1, the main result of this paper.

Proof of Theorem 1. We may, without loss of generality, assume that sup(A) = 1, since
otherwise, we consider (1/ sup(A)) · A. Since 77/177 > 5/12, we may also assume that
µ(A) ≥ 5/12, otherwise there is nothing to prove. Therefore, applying Lemma 6, we get

(19) µ(A) ≤ 1

3
+ µ(R) where R = A ∩

[
a,

2

9
+

1

3
a

]
and a = inf A.

Notice that

(20) µ(R) ≤ µ

([
a,

2

9
+

1

3
a

])
=

2

9
− 2a

3
.

Since R is non-empty (its measure is at least 1/12, by assumption), we define

r = supR, R′ =
1

r
·R and R′1 = R′ ∩

[
2

3
, 1

]
=

1

r
·
(
R ∩

[
2

3
r, r

])
and put

η1 = inf R′1 −
2

3
, η2 =

1

3
− η1 − µ(R′1).
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We distinguish two cases.

Case 1: η1 + 2η2 ≤ 1/3.

We apply Lemma 4 to the set R′ and get

µ (R′) ≤ 1

3
+ µ

(
R′ ∩

[
a

r
,
2

9
+

a

3r

])
.

This implies

(21) µ (R) ≤ r

3
+ µ

(
R ∩

[
a,

2r

9
+
a

3

])
=
r

3
+ µ (R0) ,

if we denote

R0 = R ∩
[
a,

2r

9
+
a

3

]
.

If µ(R0) = 0, then by (20), (21) and the inequality r ≤ 2/9 + a/3, we obtain

µ(R) ≤ min

(
r

3
,
2

9
− 2a

3

)
≤ min

(
2

27
+
a

9
,
2

9
− 2a

3

)
≤ 2

21
.

This can be easily checked by noticing that the maximum value is attained for a = 4/21.
Thus, in this case we must have

µ(A) ≤ 1

3
+

2

21
=

3

7
<

77

177

and we are done.
From now on, we therefore assume that µ(R0) > 0, in particular that R0 is a non

empty set and we define b = supR0. Applying Lemma 2 to R0 together with the obvious
inequality µ(R0) ≤ b− a yields

µ(R0) ≤ min

(
2b− a

4
, b− a

)
≤ min

(
r

9
− 1

12
a,

2r

9
− 2

3
a

)

since b ≤ 2r/9 + a/3. Therefore, by (21), we have

µ(R) ≤ min

(
4r

9
− 1

12
a,

5r

9
− 2

3
a

)
.
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Using (19) and r ≤ 2/9 + a/3, we get

µ(A) ≤ 1

3
+ min

(
4

9

(
2

9
+
a

3

)
− 1

12
a,

5

9

(
2

9
+

1

3
a

)
− 2

3
a

)
≤ 1

3
+ min

(
8

81
+

7

108
a,

10

81
− 13

27
a

)
≤ 77

177
.

Moreover, the upper bound is tight and taken uniquely by the value a = 8/177. This
piece of information will be used later on in the proof of Theorem 2.

Case 2 : Assume now that η1 + 2η2 > 1/3.

In particular, η1 + η2 > 1/6. This together with Lemma 3 give µ(R′) ≤ 5/12, thus

(22) µ(R) ≤ 5r

12
.

We now prove that

(23) µ(R) ≤ max

(
1

2
(r − a),

2r − a
6

)
.

Indeed, if µ(R) > (r − a)/2 = diam(R)/2, then (5) implies

µ∗(R +R) ≥ µ(R) + diam(R) = µ(R) + (r − a).

Since 1/3 · (R +R) ⊂ [2a/3, 2r/3] and (1/3 · (R +R)) ∩R = ∅, we get

µ

(
R ∩

[
a,

2

3
r

])
= µ

(
R ∩

[
2

3
a,

2

3
r

])
≤ 2

3
(r−a)−µ∗

(
1

3
· (R +R)

)
≤ 1

3
(r−a)−1

3
µ(R).

It follows that

µ(R) = µ

(
R ∩

[
a,

2

3
r

])
+ µ

(
R ∩

[
2

3
r, r

])
≤ 1

3
(r − a)− 1

3
µ(R) +

r

3
− (η1 + η2)r

≤ 1

3
(r − a)− 1

6
(r − a) +

r

6

=
2r − a

6

and assertion (23) is proved.
Synthetizing (22), (19) and (23), we finally obtain

µ(A) ≤ 1

3
+ min

(
max

(
1

2
(r − a),

1

3
r − 1

6
a

)
,

5

12
r

)
.
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Taking into account r ≤ 2/9 + a/3, we get

µ(A) ≤ 1

3
+ min

(
max

(
1

9
− 1

3
a,

2

27
− 1

18
a

)
,

5

54
+

5

36
a

)
.

If a < 2/15, this yields

µ(A) ≤ 1

3
+ min

(
1

9
− 1

3
a,

5

54
+

5

36
a

)
≤ 22

51
.

This can be checked by noticing that the maximal value of the minimum is attained for
a = 2/51. If a ≥ 2/15, we have

µ(A) ≤ 1

3
+ min

(
2

27
− 1

18
a,

5

54
+

5

36
a

)
=

1

3
+

(
2

27
− 1

18
a

)
≤ 1

3
+

2

27
=

11

27
.

Since both 22/51 and 11/27 are < 77/177, we obtain, in this second case, that µ(A) <
77/177.

This concludes the proof of Theorem 1.
�

5. The inverse result: proof of Theorem 2

This section is devoted to the proof of the structural characterization of 3-sum-free
sets with maximal measure. We start with a lemma which contains the core of the
structural result.

Lemma 7. Let A be a measurable 3-sum-free subset of [0, 1] satisfying µ(A) = 77/177.
Then µ(A∆A0) = 0 where A∆A0 stands for the symmetric difference between A and
A0 as defined in formula (1).

Proof. Let us assume that we have a set A ⊂ [0, 1] with no solution to the equation
x + y = 3z such that µ(A) = 77/177. We can assume that sup(A) = 1, otherwise
(1/ supA) · A would contradict Theorem 1.

For the sake of clarity, we recall the notation we shall use in this proof, namely

a = inf A, A1 = A ∩
[

2

3
, 1

]
, ε1 = inf A1 −

2

3
, ε2 =

1

3
− ε1 − µ(A1),

R = A ∩
[
a,

2

9
+

1

3
a

]
, r = supR, R′1 =

(
1

r
·R
)
∩
[

2

3
, 1

]
,

and

R0 = R ∩
[
a,

2

9
r +

a

3

]
, b = supR0.

If we examine the proof of Theorem 1, we notice first that we must have µ(A) =
1/3 + µ(R) that is,

(24) µ

(
A ∩

[
2

9
+
a

3
, 1

])
= µ(A \R) =

1

3
.
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Furthermore, we cannot be in Case 2 of the proof of Theorem 1 since the conclusion
is then that µ(A) ≤ 22/51 < 77/177. Therefore we must be in Case 1 (and more
precisely subcase R0 6= ∅) and several inequalities occurring in the course of the proof
must actually be equalities. In particular, we must have

a =
8

177
, r =

2

9
+
a

3
=

14

59
, and b =

2r

9
+
a

3
=

4

59
.

Now, since a > 0, Lemma 5 shows that (24) implies ε1 = ε2 = 0, thus µ(A1) = 1/3 =
µ(A \R), therefore, up to a set of measure zero, we have

(25) A = R ∪
(

2

3
, 1

)
.

Moreover, in the course of the proof of Theorem 1 we also applied Lemma 4 to (1/r)·R,
so, in the equality case, similar arguments as above yield, up to a set of measure zero,

R ∩ [2r/9 + a/3, r] = (2r/3, r) = (28/177, 14/59).

What remains of A is, by definition, contained in [a, b]. It follows that up to a set of
measure zero

A ⊂
(

8

177
,

4

59

)
∪
(

28

177
,
14

59

)
∪
(

2

3
, 1

)
= A0.

This implies the statement of the lemma since A and A0 have the same measure. �

Before coming to the proof of our inverse theorem, we recall a kind of prehistorical
lemma in our context.

Lemma 8. Let X and Y be two subsets of R. Let α, β, γ, δ ∈ R such that X ⊂ (α, β),
µ∗(X) = β − α, Y ⊂ (γ, δ), µ∗(Y ) = δ − γ, then

X + Y = (α + γ, β + δ).

Proof. Let v ∈ (α + γ, β + δ). It can be written as v = φ + χ with φ ∈ (α, β) and
χ ∈ (γ, δ). Let

θ =
1

2
min(|φ− α|, |φ− β|, |χ− γ|, |χ− δ|).

It follows that (φ − θ, φ + θ) ⊂ (α, β) and (χ − θ, χ + θ) ⊂ (γ, δ). Since X and Y are
of full measure, we must have µ∗(X ∩ (φ − θ, φ + θ)) = µ∗(Y ∩ (χ − θ, χ + θ)) = 2θ.
Moreover, the set v − (φ − θ, φ + θ) = (χ − θ, χ + θ) and it follows that we must also
have

µ∗((v −X) ∩ (χ− θ, χ+ θ)) = µ∗(Y ∩ (χ− θ, χ+ θ)) = 2θ.

Consequently the two full-measure in (χ− θ, χ+ θ) sets ((v −X) ∩ (χ− θ, χ+ θ)) and
Y ∩ (χ− θ, χ+ θ)) must intersect which shows that there are a x in X and a y in Y such
that v − x = y or v = x+ y ∈ X + Y . Hence the result, this being valid for any v. �



MAXIMAL SETS WITH NO SOLUTION TO x+ y = 3z 17

We start by a key-remark which will be essential in the proof of Theorem 2. Gener-
alizing (6), we notice that if A is a 3-sum-free set, then we have

(26) ((3 · A)− A) ∩ A = ∅.
Giving a proof is immediate.

We are now ready to conclude the proof of the Chung-Goldwasser conjecture and
prove Theorem 2.

Proof of Theorem 2. Applying Lemma 7 gives that, under the hypothesis of the theorem,
µ(A∆A0) = 0. Equivalently, A is of the form

A = U ∪ V ∪ A1 ∪ Z
with

U ⊂
[

8

177
,

4

59

]
, V ⊂

[
28

177
,
14

59

]
, and A1 ⊂

[
2

3
, 1

]
,

these three sets being of maximal measure in their respective intervals; and µ(Z) = 0.
Having noticed that if a set is of full measure in a given interval then dilating it by

a constant factor transforms it as a full measure set in the dilated interval, an easy
computation, based on Lemma 8, shows that

(3 · V − V ) ∪
(

1

3
· (A1 + A1)

)
=

(
14

59
,

98

177

)
∪
(

4

9
,
2

3

)
=

(
14

59
,
2

3

)
.

In the same way, we compute that

(3 · U)− U =

(
4

59
,

28

177

)
and

(3 · V )− A1 =

(
−31

59
,

8

177

)
.

By (26), the union of all these sets is intersection-free with A, therefore A is contained
in its complementary set in [0, 1], namely

A ⊂
[

8

177
,

4

59

]
∪
[

28

177
,
14

59

]
∪
[

2

3
, 1

]
.

It follows that Z = ∅.
Studying the different cases with the endpoints leads to the result. �
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