How unique is Lovász's theta function? - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

How unique is Lovász's theta function?

Résumé

The famous Lovász's ϑ function is computable in polynomial time for every graph, as a semi-definite program (Grötschel, Lovász and Schrijver, 1981). The chromatic number and the clique number of every perfect graph G are computable in polynomial time. Despite numerous efforts since the last three decades, stimulated by the Strong Perfect Graph Theo-rem (Chudnovsky, Robertson, Seymour and Thomas, 2006), no combinatorial proof of this result is known. In this work, we try to understand why the "key properties" of Lovász's ϑ function make it so "unique". We introduce an infinite set of convex functions, which includes the clique number ω and ϑ . This set includes a sequence of linear programs which are monotone increasing and converging to ϑ . We provide some evidences that ϑ is the unique function in this setting allowing to compute the chromatic number of perfect graphs in polynomial time.
Fichier principal
Vignette du fichier
pswz_rev.pdf (249.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01095638 , version 1 (15-12-2014)

Licence

Identifiants

  • HAL Id : hal-01095638 , version 1

Citer

Arnaud Pêcher, Oriol Serra, Annegret K. Wagler, Xuding Zhu. How unique is Lovász's theta function?. VIII ALIO/EURO Workshop on Applied Combinatorial Optimization, Dec 2014, Montevideo, Uruguay. ⟨hal-01095638⟩
1846 Consultations
617 Téléchargements

Partager

More