How unique is Lovász's theta function?
Arnaud Pêcher, Oriol Serra, Annegret K. Wagler, Xuding Zhu

To cite this version:

Arnaud Pêcher, Oriol Serra, Annegret K. Wagler, Xuding Zhu. How unique is Lovász's theta function?. VIII ALIO/EURO Workshop on Applied Combinatorial Optimization, Dec 2014, Montevideo, Uruguay. hal-01095638

HAL Id: hal-01095638

https://hal.science/hal-01095638

Submitted on 15 Dec 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

How unique is Lovász's theta function?

Arnaud Pêcher
LaBRI, UMR 5800 CNRS
Univ. of Bordeaux
351 cours de la Libération
33405 Talence, France
arnaud.pecher@labri.fr

Oriol Serra
Dep. de Matemàtica Aplicada 4 Mòdul C3, Campus Nord
Univ. Politècnica de Catalunya
Jordi Girona, 1
E-08034 Barcelona, Spain
oriol.serra@upc.edu

Annegret K. Wagler
LIMOS, UMR 6158 CNRS
Univ. Blaise Pascal
BP 10125
63173 Aubière, France

Xuding Zhu
Dep. of Mathematics
Zhejiang Normal Univ.
Jinhua, China
xdzhu@zjnu.edu.cn

Abstract

The famous Lovász's ϑ function is computable in polynomial time for every graph, as a semi-definite program (Grötschel, Lovász and Schrijver, 1981 [5]). The chromatic number and the clique number of every perfect graph G are computable in polynomial time, since they are equal to $f_{\vartheta}(G)=\vartheta(G)$. Despite numerous efforts since the last three decades, recently stimulated by the Strong Perfect Graph Theorem (Chudnovsky, Robertson, Seymour and Thomas, 2006 [2]), no combinatorial proof of this result is known.

In this work, we try to understand why the "key properties" of Lovász's ϑ function make it so "unique". We introduce an infinite set of convex functions, which includes the clique number ω and f_{ϑ}. This set includes a sequence of linear programs which are monotone increasing and converging to f_{ϑ}. We provide some evidences that f_{ϑ} is the unique function in this setting allowing to compute the chromatic number of perfect graphs in polynomial time.

Keywords-semi-definite programming;theta function.

I. Introduction

Berge introduced perfect graphs [1] in the early sixties, motivated from Shannon's problem of finding the zero-error capacity of a discrete memoryless channel [13]. A graph G is a perfect graph if and only if $\omega\left(G^{\prime}\right)=\chi\left(G^{\prime}\right)$ holds for all induced subgraphs $G^{\prime} \subseteq G$ (where the order of a largest clique of G is its clique number $\omega(G)$, and the least number of colors required to assign different colors to adjacent nodes is its chromatic number $\chi(G)$).

Berge conjectured that a graph G is perfect if and only if its complement \bar{G} is perfect (the complement \bar{G} has the same nodes as G, but two nodes are adjacent in \bar{G} if and only if they are non-adjacent in G). This was proved by Lovász [9], who gave two short and elegant proofs.

A further conjecture of Berge was proved by Chudnovsky et al. [2] who characterized perfect graphs as precisely the graphs without chordless cycles $C_{2 k+1}$ with $k \geq 2$, termed odd holes, or their complements, the odd antiholes $\bar{C}_{2 k+1}$.

Perfect graphs have been extensively studied and turned out to be an interesting and important class of graphs with a rich structure. Most notably, the two in general hard to compute graph parameters $\omega(G)$ and $\chi(G)$ can be determined in polynomial time if G is perfect [4].

The latter result relies on the following polyhedral characterization of perfect graphs. The stable set polytope $\operatorname{STAB}(G)$
is defined as the convex hull of the incidence vectors of all stable sets of G.

A canonical relaxation of $\operatorname{STAB}(G)$ is the clique constraint stable set polytope

$$
\operatorname{QSTAB}(G)=\left\{\mathbf{x} \in \mathbb{R}_{+}^{|V|}: \sum_{i \in Q} x_{i} \leq 1, Q \subseteq G \text { clique }\right\}
$$

We have $\operatorname{STAB}(G) \subseteq \operatorname{QSTAB}(G)$ in general and equality for perfect graphs [3] only. However, solving the stable set problem for a perfect graph G by maximizing a linear objective function over $\operatorname{QSTAB}(G)$ does not work directly [4], but only via a detour involving a geometric representation of graphs [10] and the resulting theta-body $\mathrm{TH}(G)$ introduced by Lovász et al. [6].
An orthonormal representation of a graph $G=(V, E)$ is a sequence $\left(\mathbf{u}_{\mathbf{i}}: i \in V\right)$ of $|V|$ unit-length vectors $\mathbf{u}_{\mathbf{i}} \in$ \mathbb{R}^{N}, where N is some positive integer, such that $\mathbf{u}_{\mathbf{i}}{ }^{T} \mathbf{u}_{\mathbf{j}}=0$ for all $i j \notin E$. For any orthonormal representation of G and any additional unit-length vector $\mathbf{c} \in \mathbb{R}^{N}$, the corresponding orthonormal representation constraint is $\sum_{i \in V}\left(\mathbf{c}^{T} \mathbf{u}_{\mathbf{i}}\right)^{2} x_{i} \leq$ 1. $\operatorname{TH}(G)$ denotes the convex set of all vectors $\mathbf{x} \in \mathbb{R}_{+}^{|V|}$ satisfying all orthonormal representation constraints for G. For any graph G, we have

$$
\operatorname{STAB}(G) \subseteq \operatorname{TH}(G) \subseteq \operatorname{aSTAB}(G)
$$

The key property of $\operatorname{TH}(G)$ is that, for any graph G, the optimization problem

$$
\vartheta(G)=\max \left\{\mathbb{1}^{T} \mathbf{x}: \mathbf{x} \in \mathrm{TH}(G)\right\}
$$

can be solved in polynomial time [4]. This deep result relies on the fact that $\vartheta(G)$ can be characterized in many equivalent ways, e.g., as the

- optimum value of a semidefinite program,
- largest eigenvalue of a certain set of symmetric matrices,
- maximum value of a function involving orthonormal representation constraints,
see [5] for further details.
For perfect graphs, $\operatorname{STAB}(G)$ and $\mathrm{TH}(G)$ coincide which allows to compute the clique number by $\omega(G)=\vartheta(\bar{G})$ and
the chromatic number by $\chi(G)=\omega(G)$ for perfect graphs G in polynomial time.
Denote by f_{ϑ} the function defined by $f_{\vartheta}(G)=\vartheta(\bar{G})$ for every graph G. We shall call f_{ϑ} "the theta function", though it is actually the usual theta function applied to the complement of the input graph. Then f_{ϑ} satisfies the three assertions:
$\left.P_{1}\right) f_{\vartheta}$ is computable in polynomial time for any graph G;
$\left.P_{2}\right) f_{\vartheta}$ is monotonic with respect to homomorphism: if G is homomorphic to H then $f_{\vartheta}(G) \leq f_{\vartheta}(H)$;
$\left.P_{3}\right) f_{\vartheta}$ is strictly monotonic on cliques: for every integer $i \geq 1, f_{\vartheta}\left(K_{i}\right)<f_{\vartheta}\left(K_{i+1}\right)$ and the difference has a polynomial space encoding.
Graph homorphisms is a crucial concept in this paper as it has a prominent role with respect to clique and chromatic number. Recall that a graph G is said to be homomorphic to H if there is a mapping from the nodes of G to the nodes of H, preserving adjacency. Then the clique number (resp. the chromatic number) of a graph G is equal to the biggest (resp. smallest) integer k such that K_{k} (resp. G) is homomorphic to G (resp. K_{k}).

The proof that the chromatic number of perfect graphs is computable in polynomial time relies on the three main properties introduced above. Indeed, take any real function g satisfying P_{1}, P_{2} and P_{3}. Let G be a perfect graph with clique number ω and chromatic number $\chi: G$ is homomorphic to $K_{\chi}=K_{\omega}$ and K_{ω} is homomorphic to G. From property P_{2}, it follows that $g(G)=g\left(K_{\omega}\right)$. Let n be the number of nodes of G. From property P_{1}, we may compute $g(G)$, $g\left(K_{1}\right), \ldots, g\left(K_{n}\right)$ in polynomial time. From property P_{3}, there is a unique index, say k, such that $g(G)=g\left(K_{k}\right)$ and we may determine it in polynomial time. Thus $\omega=k$ is computable in polynomial time.

Notice that is is easy to get functions satisfying two of the properties P_{1}, P_{2} and P_{3}. Indeed, any constant function satisfies P_{1} and P_{2} (but not P_{3}), the function returning the number of nodes of a graph satisfies P_{1} and P_{3} (but not P_{2}), the clique number satisfies P_{2} and P_{3} (but not P_{1}).

However, there does not seem to be many functions satisfy$\operatorname{ing} P_{1}, P_{2}$ and P_{3}, though f_{ϑ} is not the unique one, as some of its variants, such as the vectorial chromatic number [7] and the strong vectorial chromatic number [12], for instance, also satisfy these three properties.

The purpose of this work (which continues the considerations presented in [11]) is to investigate "how unique" the theta function is, by considering a more general setting, based on some convex supersets of SDP matrices.

The paper is organized as follows:

- In the second section, we define for every set of reals X including $\{0,1\}$, a real function f_{X}. We give the basic properties of every function f_{X}, and establish that $f_{\{0,1\}}=\omega$ and $f_{\mathbb{R}}=f_{\vartheta}$.
- In the third section, we study functions f_{X}, such that X is infinite.
- In the fourth section, we focus on the case of X being finite and exhibit a sequence of linear programs monotone increasing and converging to f_{ϑ}.

The results of sections 2 and 3 are the content of the third section of [11].

II. Notations and basic properties

Let $\{0,1\} \subseteq X \subseteq \mathbb{R}$. For every graph $G=(V, E)$ with at least one edge, denote by n its number of nodes and by $f_{X}(G)$ the value $1-\frac{1}{s}$ where s is the optimum of the following program:

$$
\begin{array}{lll}
\min & s & \\
& \text { s.t. } & \exists M \in \mathcal{M}_{X} \\
& M \text { is symmetric } \\
& M_{i i}=1, \forall i \in V \\
& M_{i j}=s, \forall i j \in E
\end{array}
$$

where \mathcal{M}_{X} is defined as the following set of matrices:

$$
\mathcal{M}_{X}=\left\{M \in \mathbb{R}^{V \times V}, \text { s.t. }, \mathbf{u}^{T} M \mathbf{u} \geq 0, \forall \mathbf{u} \in X^{V}\right\}
$$

If G does not have any edge, we let $f_{X}(G)=1$. If M is a matrix of \mathcal{M}_{X}, we say that M is feasible. A feasible matrix which yields the value $f_{X}(G)$ is called optimal.

Here are some basic observations, for every graph G :

- $f_{\mathbb{R}}(G)=\vartheta(\bar{G})$ (Lovász's theta function [10]), and thus $f_{\mathbb{R}}$ is computable in polynomial time with given accuracy;
- if $X \subseteq X^{\prime}$ then $\mathcal{M}_{X^{\prime}} \subseteq \mathcal{M}_{X}$ and thus $f_{X}(G) \leq$ $f_{X^{\prime}}(G)$.
- for every $\lambda \in \mathbb{R}^{+}, f_{\lambda X}(G)=f_{X}(G)$ as $\mathcal{M}_{\lambda X}=\mathcal{M}_{X}$.

Table 1 presents some numerical values $f_{X}(G)$ for some small graphs G and the sets X in $\{\{0,1\},\{-1,0,1\},\{-2,-1,0,1,2\}, \mathbb{R}\}$.

	$\{0,1\}$	$\{-1,0,1\}$	$\{-2,-1,0,1,2\}$	\mathbb{R}
$C_{9}=K_{9 / 4}$	2	2.061		2.064
$C_{7}=K_{7 / 3}$	2	2.103	2.1096	2.1099
$C_{5}=K_{5 / 2}$	2	2.200	2.231	2.236
$K_{8 / 3}$	2	2.333		2.343
$K_{11 / 4}$	2	2.3996		2.408
$K_{10 / 3}$	3	3.125		3.167
$\overline{C_{7}}=K_{7 / 2}$	3	3.222	3.294	3.318
$K_{11 / 3}$	3	3.400		3.452
$\overline{C_{9}}=K_{9 / 2}$	4	4.231		4.360
Petersen	2	2.5	2.5	2.5
$\overline{\text { Petersen }}$	4	4	4	4
$C_{5}+1$ multiplied node	2	2.210526		2.236

Some numbrical result for f_{X},
$X \in\{\{0,1\},\{-1,0,1\},\{-2,-1,0,1,2\}, \mathbb{R}\}$

Lemma 1. \mathcal{M}_{X} is a convex cone and a superset of the set of semi-definite positive matrices of size $n \times n$.

We first compute the value f_{X} for cliques:
Lemma 2. $f_{X}\left(K_{i}\right)=i$ for every i.
It follows from Lemma 2 that every function f_{X} satisfies property P_{3}. We now establish in the following lemma that every function f_{X} partially satisfies property P_{2}.

Lemma 3. If H is a subgraph of G then $f_{X}(H) \leq f_{X}(G)$.
This implies the so-called sandwich-property:
Corollary 4. $\omega(G) \leq f_{X}(G) \leq \vartheta(\bar{G}) \leq \chi(G)$
Proof: Due to Lemma 2 and Lemma 3, we have $\omega(G) \leq$ $f_{X}(G)$. Furthermore, $f_{X}(G) \leq \vartheta(\bar{G})$ by definition of \mathcal{M}_{X}.

III. X infinite: the roles of the clique number and THE THETA FUNCTION

Multiplying a node v of a graph G means to replace v by a stable set S such that all nodes in S have the same neighbors in G as the original node v. Thus, multiplying a node of a graph G gives a homomorphically equivalent graph H. Hence if X is a set of reals such that f_{X} satisfies the monotonic property P_{2}, then $f_{X}(G)=f_{X}(H)$. Thus $f_{\{-1,0,1\}}$ does not satisfy P_{2} as multiplying a node of a C_{5} yields a different value (see Table II). Therefore, additional constraints are needed for sets X in order to ensure that property P_{2} is fulfilled. We next show that being closed with respect to addition is such a sufficient condition:

Lemma 5. Assume that X is closed with respect to addition. If G is homomorphic to H then $f_{X}(G) \leq f_{X}(H)$ (monotonic property).

If X contains 0 and positive reals only then f_{X} is the clique number:

Lemma 6. For every graph $G, f_{\mathbb{R}^{+}}(G)=\omega(G)$.
As an obvious consequence of Lemma 6, we get:
Corollary 7. $f_{\{0,1\}}$ is NP-hard to compute.
Due to Lemma 6, the base set X has to have one negative element, say -1 , in order to get a function f_{X} which is different from the clique number. If we apply the requirement of Lemma 5 to get a function satisfying the monotonic property then X contains all integers. We next establish that this implies that f_{X} has to be the theta function:
Lemma 8. If $\mathbb{Z} \subseteq X$ or $[-1,1] \subseteq X$ then $f_{X}(G)=\vartheta(\bar{G})$ for every graph G.

These results show that the clique number and f_{ϑ} are two prominent functions when X is infinite: we do not know whether there is a function f_{X}, with X infinite, distinct of the clique number and f_{v}.

IV. X FINITE: A SEQUENCE OF LINEAR PROGRAMS CONVERGING TO THE THETA FUNCTION

For every positive integer k, let X_{k} denote the set of integers $\{-k,-(k-1), \ldots,-1,0,1, \ldots, k-1, k\}$, and f_{k} be the function $f_{X_{k}}$. Notice that for every graph G with n nodes, the value $f_{k}(G)$ is the output of a linear program with exponentially many constraints (approximatively $(2 k+1)^{n}$ constraints). Furthermore, $f_{k}(G)$ is a rational for every k and graph G (and thus distinct of f_{ϑ}). The sequence $f_{k}(G)_{k \geq 1}$ is an increasing sequence, as $X_{k-1} \subsetneq X_{k}$ (for every $k \geq 2$).

Hence we have, for every graph G,

$$
\omega(G) \leq f_{1}(G) \leq f_{2}(G) \leq \ldots \leq f_{k}(G) \leq f_{\vartheta}(G)
$$

We establish that

$$
\lim _{k} f_{k}(G)=f_{\vartheta}(G)
$$

holds for every graph G as a consequence of the following lemma and Lemma 8:

Lemma 9. Let $Y_{1} \subset Y_{2} \subset \cdots$ be a monotonous chain of subsets containing $\{0,1\}$ and set $Y=\cup_{k} Y_{k}$. For every graph G we have

$$
f_{Y}(G)=\lim _{k} f_{Y_{k}}(G)
$$

Due to Lemma 9, the sequence f_{k} is converging to f_{ϑ}.
Notice that for graphs G such that $f_{1}(G)=f_{\vartheta}(G)$ (e.g. perfect graphs) then $f_{1}(G)=f_{2}(G)=\ldots=f_{k}(G)$ holds for every k. We do not know whether the sequence is strictly increasing for graphs G such that $f_{1}(G) \neq f_{\vartheta}(G)$, but suspect that it is. In particular, computer experiments suggest that $f_{k}\left(C_{5}\right)<f_{k+1}\left(C_{5}\right)$ for every positive integer k.
We believe that none of the functions f_{k} is monotonic with respect to homorphisms but were not yet able to prove it.
In Lemma 5, the set X is assumed to be closed with respect to addition, a property which is satisfied by none of the sets X_{k}. We used this assumption in the proof of Lemma 5 by constructing an optimal matrix for a graph G with a duplicated node: the construction consists of duplicating one row and one column.
The next lemma shows that if f_{k} is monotonic with respect to homorphism, then every optimal matrix for a graph is such a matrix with "one duplicated row and one duplicated column". This suggests that X_{k} has "somehow" to be closed with respect to addition, a contradiction.

Lemma 10. Let H be a circulant graph (that is a Cayley on a cyclic group) and let G be obtained from H by duplicating a node. If $f_{k}(G)=f_{k}(H)$ then every optimal matrix of M is obtained from an optimal matrix of H by duplicating one row and column.

V. CONCLUDING REMARKS

Our study seems to indicate that the clique number function and the theta function are the only functions in our setting that satisfy the monotonic requirement with respect to homomorphism (property P_{2}). Hence in this sense, the theta function is really unique, since it is also computable in polynomial time (property P_{1}).
As of the sandwich property, we point out that it holds even if the monotonic property is not satisfied (Corollary 4): there are many different functions f_{X} in between the clique and the chromatic number, all of them being a lower bound for the theta function.
For further works, it is worth to notice that the numerical values presented in Table II suggest that the function $f_{\{-1,0,1\}}$ gives already good lower bounds for the theta function.

References

[1] Berge, C., "Färbungen von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind," Wiss. Zeitschrift der Martin-Luther-Universität HalleWittenberg 10, 114-115 (1961)
[2] Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R., "The Strong Perfect Graph Theorem," Annals of Mathematics 164, 51-229 (2006)
[3] Chvátal, V., 'On certain polytopes associated with graphs," J. of Combinatorial Theory B 18, 138-154 (1975)
[4] Grötschel, M., Lovász, L., Schrijver, A., "The ellipsoid method and its consequences in combinatorial optimization," Combinatorica 1, Vol. 2, pp. 169-197, 1981
[5] Grötschel, M., Lovász, L., Schrijver, A., Topics on perfect graphs, vol. 88, chap. Polynomial algorithms for perfect graphs, pp. 325-356. NorthHolland Math. Stud. (1984)
[6] Grötschel, M., Lovász, L., Schrijver, A., Geometric Algorithms and Combinatorial Optimization, Springer Verlag (1988)
[7] Karger, D., Motwani, R., Sudan, M., "Approximate graph coloring by semidefinite programming," Journal of ACM 45, 246-265 (1998)
[8] Lovász, L., "A characterization of perfect graphs," J. of Combinatorial Theory B 13, 95-98 (1972)
[9] Lovász, L., "Normal hypergraphs and the perfect graph conjecture," Discrete Mathematics 2, 253-267 (1972)
[10] Lovász, L., "On the Shannon capacity of a graph," Trans. Inform. Theory 25(1), 1-7 (1979)
[11] Pêcher, A., Wagler, A., " Beyond Perfection: Computational Results for Superclasses," in: M. Jünger and G. Reinelt, Facets of Combinatorial Optimization - Festschrift for Martin Grtschel, Springer, 2013
[12] Szegedy, M., " A note on the number of Lovász and the generalized Delsarte bound", In proceedings of 35th Annual Symposium on Foundations of Computer Science, 36-39 (1994)
[13] Shannon, C.E., 'The zero-error capacity of a noisy channel," IRE Trans. Inform. Theory 2, 8-19 (1956)

