Spectrum for a small inclusion of negative material - Archive ouverte HAL
Article Dans Une Revue Zeitschrift für Angewandte Mathematik und Physik = Journal of Applied mathematics and physics = Journal de mathématiques et de physique appliquées Année : 2015

Spectrum for a small inclusion of negative material

Résumé

We study a spectral problem (P δ) for a diffusion like equation in a 3D domain Ω. The main originality lies in the presence of a parameter σ δ , whose sign changes on Ω, in the principal part of the operator we consider. More precisely, σ δ is positive on Ω except in a small inclusion of size δ > 0. Because of the sign-change of σ δ , for all δ > 0 the spectrum of (P δ) consists of two sequences converging to ±∞. However, at the limit δ = 0, the small inclusion vanishes so that there should only remain positive spectrum for (P δ). What happens to the negative spectrum? In this paper, we prove that the positive spectrum of (P δ) tends to the spectrum of the problem without the small inclusion. On the other hand, we establish that each negative eigenvalue of (P δ) behaves like δ −2 µ for some constant µ < 0. We also show that the eigenfunctions associated with the negative eigenvalues are localized around the small inclusion. We end the article providing 2D numerical experiments illustrating these results.
Fichier principal
Vignette du fichier
1401.2146v1.pdf (1.25 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01094428 , version 1 (12-12-2014)

Identifiants

Citer

Lucas Chesnel, Xavier Claeys, Sergueï A. Nazarov. Spectrum for a small inclusion of negative material. Zeitschrift für Angewandte Mathematik und Physik = Journal of Applied mathematics and physics = Journal de mathématiques et de physique appliquées, 2015, 66 (5), pp.2173-2196. ⟨hal-01094428⟩
259 Consultations
84 Téléchargements

Altmetric

Partager

More