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Abstract. We study a spectral problem (Pδ) for a diffusion like equation in a 3D domain Ω. The
main originality lies in the presence of a parameter σδ, whose sign changes on Ω, in the principal
part of the operator we consider. More precisely, σδ is positive on Ω except in a small inclusion of
size δ > 0. Because of the sign-change of σδ, for all δ > 0 the spectrum of (Pδ) consists of two
sequences converging to ±∞. However, at the limit δ = 0, the small inclusion vanishes so that
there should only remain positive spectrum for (Pδ). What happens to the negative spectrum?
In this paper, we prove that the positive spectrum of (Pδ) tends to the spectrum of the problem
without the small inclusion. On the other hand, we establish that each negative eigenvalue of (Pδ)
behaves like δ−2µ for some constant µ < 0. We also show that the eigenfunctions associated with
the negative eigenvalues are localized around the small inclusion. We end the article providing 2D
numerical experiments illustrating these results.

Key words. Negative materials, small inclusion, plasmonics, metamaterial, sign-changing coeffi-
cients, eigenvalues, asymptotics, singular perturbation.

1 Introduction
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Figure 1: Schematic view of the geometry.

Let Ω and Ξ− be three-dimensional domains, i.e.
bounded and connected open subsets of R3, with
boundaries ∂Ω and Γ := ∂Ξ− that admit C ∞ reg-
ularity. Assume that Ω, Ξ− contain the origin O
and that there holds Ξ− ⊂ Ω. For δ ∈ (0; 1], we
introduce the sets (see Figure 1)

Ωδ
− := δ Ξ−

Ωδ
+ := Ω \ Ωδ

−

Γδ := ∂Ωδ
−.

Define σδ : Ω → R by σ = σ− on Ωδ
− and σ = σ+

on Ωδ
+, where σ− < 0 and σ+ > 0 are constants.

All through the paper, if u is a measurable function on Ω, we shall denote u± := u|Ωδ
±

. For any
open set ω ⊂ R3, the space L2(ω) will refer to the set of square integrable functions defined on ω,
equipped with the scalar product (u, v)ω =

∫
ω uvdx and the norm ‖u‖ω :=

√
(u, u)ω. In the present

article, we wish to study the following spectral problem involving a Dirichlet boundary condition:

Find (λδ, uδ) ∈ C × (H1
0(Ω) \ {0}) such that

−div(σδ∇uδ) = λδuδ in Ω.
(1)

1



In Poblem (1), λδ is the spectral parameter. Moreover, H1
0(Ω) stands for the subspace of functions

of the Sobolev space H1(Ω) vanishing on ∂Ω. It is endowed with the norm ‖u‖H1
0(Ω) := ‖∇u‖Ω. We

regard −div(σδ∇·) as the unbounded operator Aδ : D(Aδ) → L2(Ω) defined by

Aδ v = −div(σδ∇v)

D(Aδ) := {v ∈ H1
0(Ω) | div(σδ∇v) ∈ L2(Ω)}.

(2)

Since the interface Γδ = ∂Ωδ
− between the two subdomains is smooth, one can verify that when

the contrast κσ := σ−/σ+ satisfies κσ 6= −1, Aδ fits the standard framework of [22, 41] for dealing
with transmission problems. This leads to the following result (for a detailed discussion for this
particular problem, see also [40]).

Proposition 1.1. Assume that κσ = σ−/σ+ 6= −1. Then for all δ ∈ (0; 1], the operator Aδ is
densely defined, closed, self-adjoint and admits compact resolvent.

Therefore, for a fixed δ > 0, we can study the spectrum of Aδ. Because σδ changes sign on Ω, this
spectrum is not bounded below nor above. More precisely, we have the following results (see [40]
and [12, Prop 2.2]).

Proposition 1.2. Assume that κσ 6= −1. Then for all δ ∈ (0; 1], the spectrum of Aδ consists in
two sequences, one nonnegative and one negative, of real eigenvalues of finite multiplicity:

. . . λδ
−n ≤ · · · ≤ λδ

−1 < 0 ≤ λδ
1 ≤ λδ

2 ≤ · · · ≤ λδ
n . . . . (3)

In the sequences above, the numbering is chosen so that each eigenvalue is repeated according to its
multiplicity. Moreover, there holds lim

n→+∞
λδ

±n = ±∞.

In Proposition 1.1, the assumption κσ 6= −1 is important and in the sequel, we should not depart
from it. The case κσ = −1 is rather pathological and is beyond the scope of the present article.

Proposition 1.2 indicates that for all δ ∈ (0; 1], S(Aδ) (the spectrum of Aδ) contains a sequence
of eigenvalues which tends to −∞. On the other hand, when δ goes to zero, the small inclusion
vanishes so that the parameter σδ becomes strictly positive at the limit δ = 0. As a consequence,
one could expect to obtain only positive spectrum for the operator Aδ when δ → 0. The question we
want to answer in this paper can be formulated as follows: what happens to the negative spectrum
of Aδ when the small inclusion shrinks?

Problems of small inclusions or small holes have now a long history in asymptotic analysis. The
case where Ωδ

− is a hole (with Dirichlet of Neumann condition on ∂Ωδ
−) in 2D/3D has been studied

in detail in [26, 27] (see also the references therein). The configuration where Ωδ
− contains a positive

material with a concentrated mass has been investigated in [42, 36, 28, 8] (see also the review [23]).
In this context, the asymptotics of eigenpairs of elliptic operators has been considered in [25, 26, 24].

A remarkable feature of Problem (1) is the change of sign of the parameter appearing in the
principal part of the operator Aδ. This is what makes it non-standard. In [33, 30, 32], the authors
have examined the asymptotics of eigenpairs in situations where a sign changing coefficient arises
in the compact part of the spectral problem under study. Yet, to our knowledge, asymptotics of
the eigenpairs with a sign changing coming into play in the principal part of the operator has never
been considered so far.

The motivation for investigating Problem (1) comes from electromagnetism and in particular from
the promising metamaterials as well as the so-called surface plasmon polaritons. The metamaterials
are artificial materials, made of small resonators arranged to obtain macroscopic media with exotic
permittivity ε and/or permeability µ. In this field, one of the goals consists in achieving negative
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ε and/or µ. For more information concerning metamaterials, we refer the reader to the overview
article [1]. The surface plasmon polaritons are waves which can propagate at the interface between
a metal and a classical dielectric in the visible range. They appear because at optical frequencies,
the permittivity of a metal can be negative. The plasmonic technologies [2, 10, 45, 16] could allow
important progresses in the miniaturization of electronic devices.

The outline of the paper is the following. In Section 2, we start by presenting the features of the
two limit operators A0 and B∞ (see their definition in (6) and (10)) which appear naturally in the
study of the spectrum of Aδ when δ tends to zero. In Section 3, we give an asymptotic expansion
of the solution of the source term problem associated with (1) as δ → 0. In order to justify this
asymptotic expansion, we establish uniform boundedness of the inverse of Aδ in terms of weighted
norms involving the small parameter δ. The proof of this important result is made difficult because
of the change of sign of the parameter σδ. Our approach is based on the technique of overlapping
cut-off functions introduced in [27, Chap 2], [29]. Then, we make use of this uniform boundedness
result in order to show that (Aδ)−1 converges strongly to (A0)−1 in the operator norm as δ → 0.
This allows to prove directly, in Section 4, that the positive part of the spectrum of Aδ converges
to the spectrum of A0. This will also imply that the negative eigenvalues of Aδ all diverge to −∞.
Section 5 then focuses on a sharper study of the negative part of the spectrum of Aδ. In particular,
we show that all negative eigenvalues admit a behaviour of the form δ−2µ, with µ < 0. In the
last section, we illustrate these theoretical results with 2D numerical experiments. The two main
results of the paper, respectively for the positive and negative spectrum of Aδ, are formulated in
Theorem 4.1 and Theorem 5.1.

2 Limit problems

In the sequel, we will provide an asymptotic expansion of the eigenpairs of Problem (1) as δ tends to
zero. This asymptotic expansion will involve the spectral parameters of some operators associated
with two limit problems independent of δ. The goal of the present section is to introduce these
operators and to provide their main features. Before proceeding further, we introduce a set of
cut-off functions which will be useful in our analysis. Let ψ and χ be two elements of C ∞(R, [0; 1])
such that

ψ(r) + χ(r) = 1, ψ(r) = 1 for r ≤ 1, and ψ(r) = 0 for r ≥ 2. (4)

For t > 0, we shall denote ψt and χt the functions (see Figure 2) such that

ψt(r) = ψ(r/t) and χt(r) = χ(r/t). (5)

O 1 2

1

r 7→ ψ(r)

O t 2t

1

r 7→ ψt(r)

O 1 2

1

r 7→ χ(r)

O t 2t

1

r 7→ χt(r)

Figure 2: Cut-off functions.

In order to simplify the presentation and without restriction, we shall assume that the domains Ω
and Ξ− are such that B(O, 2) ⊂ Ω, Ξ− ⊂ B(O, 1) so that the support of ψ is included in Ω and so
that ψ = 1 on Ξ−. Here and all through the paper, B(O, d) denotes the open ball of R3, centered at
O and of radius d > 0. If the domains Ω, Ξ− do not satisfy this assumption, we modify the cut-off
functions accordingly.
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2.1 Far field operator

As δ tends to zero, the small inclusion of negative material disappears. In other words, there holds
σδ → σ+ a.e. in Ω. This leads us to introduce the far field operator A0 : D(A0) → L2(Ω) such that

A0v = −σ+∆v

D(A0) := {v ∈ H1
0(Ω) | ∆v ∈ L2(Ω)}.

(6)

Since ∂Ω is smooth, D(A0) coincides with H2(Ω) ∩ H1
0(Ω). Moreover, the operator A0 is bijective

from D(A0) to L2(Ω) and its spectrum forms a discrete sequence of eigenvalues:

S(A0) = {µn}n≥1 with 0 < µ1 < µ2 ≤ · · · ≤ µn . . . →
n→+∞

+∞. (7)

In (7), each eigenvalue is repeated according to its multiplicity. On the other hand, if vn is an
eigenfunction associated to the eigenvalue µn, then vn ∈ C ∞(Ω) (at least when ∂Ω is of class C ∞).

In the sequel, we shall need sharp estimates for the behaviour of the eigenfunctions of A0 at
O. Following [21], we shall express them in weighted norms. Let C ∞

0 (Ω \ {O}) refer to the set
of infinitely differentiable functions supported in Ω \ {O}. For β ∈ R and k ≥ 0, we define the
Kondratiev space Vk

β(Ω) as the completion of C ∞
0 (Ω \ {O}) in the norm

‖v‖Vk
β

(Ω) :=
( ∑

|α|≤k

∫
Ω
r2(β+|α|−k)|∂α

xv|2 dx
)1/2

. (8)

In (8), r = |x| denotes the distance to the origin O. We define the spaces Vk
β(Ωδ

±) like Vk
β(Ω),

replacing Ω by Ωδ
± in (8). Of course, since O /∈ Ωδ

+, the space Vk
β(Ωδ

+) coincides with Hk(Ωδ
+) for

all β ∈ R. To deal with homogeneous Dirichlet boundary condition, we shall consider functions
belonging to the space V̊1

β(Ω) := {v ∈ V1
β(Ω) | v = 0 on ∂Ω}. Then, we introduce the continuous

operators Aβ : D(Aβ) → V0
β(Ω) such that

Aβv = −σ+∆v

D(Aβ) := V2
β(Ω) ∩ V̊1

β−1(Ω).
(9)

The proof of the following classical result can be found in the original paper [21] or, for example,
in [34, Chap 2], [27, Chap 1].

Proposition 2.1. If β ∈ (1/2; 3/2) then Aβ is an isomorphism.

2.2 Near field operator

Introduce the rapid coordinate ξ := δ−1x and let δ tend to zero. Then, define the function σ∞ :
R3 → R such that σ∞ = σ+ in Ξ+ := R3 \ Ξ− and σ∞ = σ− in Ξ−. In the sequel, the following
near field operator B∞ : D(B∞) → L2(R3) will play a key role in the analysis:

B∞w = −div(σ∞∇w)

D(B∞) := {w ∈ H1(R3) | div(σ∞∇w) ∈ L2(R3)}.
(10)

The description of D(B∞) is less classical than the one of D(A0) because the sign of the parameter
σ∞ is not constant on R3. Nevertheless, when κσ 6= −1, B∞ has elliptic regularity properties. In
the next result, we consider the norm ‖w‖H2(R3\Γ) := ‖w‖H2(Ξ−) + ‖w‖H2(Ξ+), as well as the jump
of normal derivative [σ∂nw]Γ := σ+∂nw|+Γ − σ−∂nw|−Γ , where n denotes the unit outward normal
vector to Γ directed from Ξ− to Ξ+.
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Proposition 2.2. Assume that κσ 6= −1. Then any w ∈ D(B∞) satisfies w ∈ H2(Ξ±) and
[σ∂nw]Γ = 0. Moreover, there exists a constant C > 0 such that

‖w‖H2(R3\Γ) ≤ C (‖div(σ∞∇w)‖R3 + ‖w‖R3), ∀w ∈ D(B∞). (11)

Proof. Clearly, any element w ∈ H1(R3) that verifies w ∈ H2(Ξ±) and [σ∂nw]Γ = 0 belongs to
D(B∞). Now, let us pick some w ∈ D(B∞). The relation [σ∂nw]Γ = 0 is classically obtained
using Green’s formula. Now, we wish to prove (11). Let ψ be the cut-off function defined in
(4). There holds div(σ∞∇(ψw)) = f with f = ψ div(σ∞∇w) + 2σ+∇ψ · ∇w + σ+w∆ψ ∈ L2(R3)
(notice that σ∞ = σ+ on the supports of ∇ψ and ∆ψ). Since κσ 6= −1 and since Γ = ∂Ξ− is
smooth, the results of [22, 41] allow to prove that ψw|Ξ± belongs to H2(Ξ±) with the estimate
‖ψw‖H2(Ξ±) ≤ C (‖f‖R3 + ‖w‖Ω). Here and in the sequel, C > 0 denotes a constant independent of
w which can change from one line to another. Using interior regularity in Ξ+, one establishes with
classical techniques (see [22]) that ‖f‖R3 ≤ C (‖ψ div(σ∞∇w)‖R3 + ‖w‖Ω). This implies

‖ψw‖H2(Ξ±) ≤ C (‖ψ div(σ∞∇w)‖R3 + ‖w‖Ω), ∀w ∈ D(B∞), (12)

with a constant C > 0 that does not depend on w. It remains to estimate div(σ∞∇(χw)) =
σ+∆(χw). Thanks to Plancherel’s theorem, we can write ‖χw‖H2(Ξ+) ≤ C (‖div(σ∞∇(χw))‖Ξ+ +
‖χw‖R3). Using again interior regularity in Ξ+, we deduce that ‖χw‖H2(Ξ+) ≤ C (‖χdiv(σ∞∇w)‖R3+
‖w‖R3). This last inequality together with (12) finally leads to (11) since ψ + χ = 1.

Let us describe the spectrum S(B∞) of the operator B∞ when κσ 6= −1. According to the 3D
version of [4, Thm 5.2], for all f ∈ L2(R3), we know that the problem “find v ∈ H1(R3) such that
(σ∞∇v,∇v′)R3 ± i(v, v′)R3 = (f, v′)R3 for all v′ ∈ H1(R3)”, has a unique solution. On the other
hand, since −σ+∆ ± iId : H2(R3) → L2(R3) is bijective, we can prove that B∞ ± iId is bijective.
Here, Id denotes the identity of L2(R3). From [3, Thm 4.1.7], we conclude that B∞ is self-adjoint.
Moreover, observing that σ∞ = σ+ outside the compact region Ξ−, using again the 3D version of [4,
Thm 5.2], we can show that B∞ has the same continuous spectrum as the Laplace operator in R3.
In other words, there holds Sc(B∞) = [0; +∞). The interval (−∞; 0) contains discrete spectrum
only. Working as in [6, Prop 4.1] (see also [12, Prop 2.2]), we can build a sequence (ζn)n of elements
of D(B∞) such that limn→∞(B∞ζn, ζn)R3 = −∞ and ‖ζn‖R3 = 1. According to [3, Cor 4.1.5], this
proves that the discrete spectrum of B∞ is equal to a sequence of eigenvalues

S(B∞) \ R+ = {µ−n}n≥1 with 0 > µ−1 ≥ µ−2 ≥ · · · ≥ µ−n . . . →
n→+∞

−∞, (13)

where each eigenvalue is repeated according to its multiplicity. In the following proposition, we
establish that the eigenfunctions corresponding to the negative spectrum of B∞ are localized: they
decay exponentially at infinity.

Proposition 2.3. Assume that κσ 6= −1. For any eigenfunction w of B∞ associated with an
eigenvalue µ ∈ S(B∞) \ R+ satisfying ‖w‖R3 = 1, we have∫

R3
( |w(ξ)|2 + |∇w(ξ)|2 ) exp

(
|ξ|
√

|µ|/σ+

)
dξ < +∞. (14)

Proof. The proof of this proposition will rely on a technique used in [18, 9, 31]. Consider some
γ > 0 whose appropriate value will be fixed later on, and pick some T ≥ 2. We introduce the weight
function W T

γ such that

W T
γ (ξ) =


exp(γ) for |ξ| ≤ 1
exp(γ|ξ|) for 1 ≤ |ξ| ≤ T
exp(γT ) for |ξ| ≥ T .

It is clear that W T
γ is bounded and continuous. If w is an eigenfunction of B∞ associated with

the eigenvalue µ < 0, there holds (σ∞∇w,∇w′)R3 = µ (w,w′)R3 for all w′ ∈ H1(R3). Choosing
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w′ = (W T
γ )2w (observe that this function is indeed an element of H1(R3)), we obtain

|µ| ‖W T
γ w‖2

R3 = −(σ∞∇w,∇((W T
γ )2w))R3

= −(σ∞W T
γ ∇w,∇(W T

γ w))R3 − (σ∞W T
γ ∇w,w∇W T

γ )R3

= −(σ∞(∇(W T
γ w) − w∇W T

γ ),∇(W T
γ w))R3 − (σ∞W T

γ ∇w,w∇W T
γ )R3

= −(σ∞∇(W T
γ w),∇(W T

γ w))R3 + (σ∞w∇W T
γ , w∇W T

γ )R3 .

(15)

On Ξ−, we have W T
γ = exp(γ). Therefore, (15) rewrites as

|µ| ‖W T
γ w‖2

R3 + σ+ ‖∇(W T
γ w)‖2

Ξ+ = exp(2γ)|σ−| ‖∇w‖2
Ξ− + σ+ ‖w∇W T

γ ‖2
R3 . (16)

Add σ+‖∇(W T
γ w)‖2

Ξ−
= σ+ exp(2γ)‖∇w‖2

Ξ−
on each side of (16), and use triangular inequality

‖∇(W T
γ w)‖2

R3 ≥ 1
2‖W T

γ ∇w‖2
R3 − ‖w∇W T

γ ‖2
R3 , to obtain

|µ|‖wW T
γ ‖2

R3 − 2σ+‖w∇W T
γ ‖2

R3 + σ+
2

‖W T
γ ∇w‖2

R3 ≤ exp(2γ) (σ+ + |σ−|) ‖∇w‖2
Ξ− . (17)

We have |∇W T
γ | ≤ γ|W T

γ |, which implies |µ|‖wW T
γ ‖2

R3 −2σ+‖w∇W T
γ ‖2

R3 ≥ (|µ|−2γ2σ+) ‖wW T
γ ‖2

R3 .
From this, we conclude that

|µ|‖W T
γ w‖2

R3 + σ+‖W T
γ ∇w‖2

R3 ≤ 2 exp(2γ) (σ+ + |σ−|) ‖∇w‖2
Ξ− , for γ = 1

2

√
|µ|/σ+.

There only remains to let T tend to +∞. Since the right-hand side of the inequality above is
independent of T , this concludes the proof.

In the sequel, we will need to work with an operator analog to B∞ but considered in Sobolev spaces
with weight at infinity. If ξ ∈ R3, we denote ρ := |ξ|. For β ∈ R, k ≥ 0, we introduce the space
Vk

β(R3) defined as the completion of the set C ∞
0 (R3) in the norm

‖w‖Vk
β

(R3) :=
( ∑

|α|≤k

∫
R3

(1 + ρ)2(β+|α|−k)|∂α
ξ w|2dξ

)1/2
. (18)

We also define Vk
β(Ξ±) := {w|Ξ± |w ∈ Vk

β(R3)} (although Vk
β(Ξ−) = Hk(Ξ−) for all β ∈ R, as Ξ− is

bounded). Introduce the operator Bβ : D(Bβ) → V0
β(R3) such that

Bβw = −div(σ∞∇w) ∀w ∈ D(Bβ)

D(Bβ) := {w ∈ V1
β−1(R3) | div(σ∞∇w) ∈ V0

β(R3)}.
(19)

Working as in the proof of Proposition 2.2 and using the Kondratiev theory, one can show that
any element w ∈ D(Bβ) verifies w ∈ V2

β(Ξ±) and [σ∂nw]Γ = 0. Conversely it is straightforward
to check that any w ∈ V1

β−1(Ξ±) satisfying these two conditions belongs to D(Bβ). Hence D(Bβ)
is a closed subset of V2

β(R3 \ Γ), and Bβ is continuous when equipping D(Bβ) with the norm
‖w‖V2

β
(R3\Γ) := ‖w‖V2

β
(Ξ+) + ‖w‖V2

β
(Ξ−).

Proposition 2.4. Assume that κσ 6= −1 and that β ∈ (1/2; 3/2). Then Bβ is a Fredholm operator
with ind(Bβ) := dim(ker Bβ) − dim(coker Bβ) = 0 1.

Proof. Once the difficulty of the change of sign of σ∞ on the compact set Ξ− has been tackled
thanks to [14, 4], the proof of this proposition is rather classical and we will just sketch it. From the
Kondratiev theory [21], we know that for β ∈ (1/2; 3/2), the Laplace operator maps isomorphically
V2

β(R3) onto V0
β(R3). Using this result and inequality (12), we obtain

‖w‖V2
β

(R3\Γ) ≤ C (‖div(σ∞∇w)‖V0
β

(R3) + ‖w‖Ω), ∀w ∈ D(Bβ).

1We recall that if X, Y are two Banach spaces and if L : X → Y is a continuous linear map with closed range,
then the cokernel of L is defined as coker L := (Y/range L).
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Since the map w 7→ w|Ω from D(Bβ) to L2(Ω) is compact, using the classical extension [43] of the
well-known Peetre’s lemma [37] (see also lemma 5.1 of [22, Chap 2]), we infer from the previous a
priori estimate that Bβ has a kernel of finite dimension and that its range is closed in V0

β(R3). As
a consequence of the latter property, [3, Thm 3.3.5] ensures that coker Bβ is isomorphic to ker Bβ

∗

where Bβ
∗ denotes the adjoint of Bβ. But the adjoint of Bβ is the operator B2−β, which has a

kernel of finite dimension because for β ∈ (1/2; 3/2), 2 − β also belongs to (1/2; 3/2). Therefore
coker Bβ is of finite dimension. Using the Kondratiev theory again, we can establish that for all β ∈
(1/2; 3/2), there holds ker Bβ = ∩γ∈(1/2;3/2)ker Bγ . This implies ker Bβ = ker B2−β, dim(coker Bβ) =
dim(ker B2−β) = dim(ker Bβ) and so ind(Bβ) = 0.

Depending on the parameter σ± and on the domain Ξ−, it can happen that the operator Bβ gets
a non trivial (finite dimensional) kernel. We discard this possibility, considering an additional
assumption

Assumption 1. There exists β ∈ (1/2; 3/2) such that the operator Bβ is injective.

According to Proposition 2.4 and the Kondratiev theory [21], Assumption 1 implies that Bβ :
D(Bβ) → V0

β(R3) is an isomorphism for all β ∈ (1/2, 3/2) (and not just for one value of β).

Remark 2.1. This assumption is interesting by itself and there exist results to check whether or not
it holds for a given configuration. It is related to a question investigated by H. Poincaré in [39]. As
it is done in the introduction of the very interesting paper [20], let us summarize Poincaré’s problem
with our notation. Let w : R3 → R be a continuous function whose restrictions to Ξ± are harmonic
(like the elements of the kernel of Bβ). If we impose the total energy ‖∇w‖R3 to be equal to one,
what is the minimum of ‖∇w‖Ξ−? The answer is simple: this minimum is zero and it is attained
for w = w0 where w0 = 1 in Ξ−. Now, if we assume that w satisfies both ‖∇w‖R3 = 1 and the
orthogonality relation (∇w,∇w0)R3 = 0, what is the minimum of ‖∇w‖Ξ−? Is it attained? It turns
out that the minimum is indeed attained and is equal to some m1 > 0. Moreover, if w1 is a function
which realizes this minimum, then there holds ∂nw

1|+Γ = −m1∂nw
1|−Γ on ∂Ξ−. In other words, w1

belongs to the kernel of Bβ when the contrast κσ = σ−/σ+ verifies κσ = −m1. Continuing the
process and imposing the orthogonality relations (∇w,∇w0)R3 = 0, (∇w,∇w1)R3 = 0 . . . , we can
express all the values of the contrasts κσ for which Bβ fails to be injective in term of the extrema
of the ratios of energies ‖∇w‖Ξ−/‖∇w‖R3. For more details concerning this question, we refer the
reader to [20, 17, 38, 7].

Remark 2.2. The study of the asymptotics of the eigenvalues of Aδ as δ goes to zero remains an
open question when Assumption 1 does not hold.

In this paper, we focus on the behaviour of eigenvalues and we leave on one side the justification
of asymptotics of eigenfunctions. We shall prove that if Assumption 1 holds, then for all n ∈ N∗ :=
{1, 2, . . . }, the eigenvalue λδ

n ≥ 0 of Aδ converges to the corresponding eigenvalue µn > 0 of A0.
We shall also show that for all n ∈ N∗, the eigenvalue λδ

−n < 0 of Aδ is such that δ2λ−n converges
to µ−n < 0, where µ−n < 0 is the eigenvalue of B∞ defined in (13). Before doing that, in the next
section, we investigate the source term problem associated with the original spectral Problem (1).
In the process, we will establish a stability estimate which will reveal useful for the study of the
initial problem.

3 Asymptotic analysis for the source term problem

Let f be a source term in L2(Ω). In this section, we consider the problem

Find uδ ∈ H1
0(Ω) such that

−div(σδ∇uδ) = f in Ω.
(20)

For a fixed δ ∈ (0; 1], using Proposition 2.1 and the 3D version of [4, Thm 5.2], we can show,
working as in the proof of Proposition 2.4, that Problem (20) is uniquely solvable if and only if it
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is injective. Under Assumption 1, when the contrast satisfies κσ 6= −1, we will establish that it is
injective (so that (Aδ)−1 is well-defined) for δ small enough. Then, we provide, and justify with an
error estimate, an asymptotic expansion of the solution uδ.

3.1 A stability estimate

We start by proving an important stability estimate for problem (20). Because the sign of σδ changes
on Ω, this is a delicate procedure and the variational approach developed in [5, 4] to establish
Fredholm property for (20) seems useless here. Instead, we will employ a method introduced in [27,
Chap 2], [29] (see also [13] for an example of application in the context of negative materials), relying
on the use of overlapping cut-off functions. To implement this technique, we need to introduce the
Hilbert spaces Vk

β, δ(ω), k ∈ N, β ∈ R, over a domain ω ⊂ R3. These spaces are defined as the
completions of C ∞(ω) for the weighted norms

‖v‖Vk
β,δ

(ω) :=
( ∑

|α|≤k

∫
Ω

(r + δ)2(β+|α|−k)|∂α
xv|2 dx

)1/2
. (21)

Observe that for any β ∈ R and δ > 0, the space Vk
β, δ(Ω) coincides with Hk(Ω) because the

norm (21) is equivalent to ‖ · ‖Hk(ω). However, the constants coming into play in this equivalence
definitely depend on δ which is a crucial feature. In the sequel, we shall consider the norm defined
by ‖v‖V2

β,δ
(Ω\Γδ) := ‖v‖V2

β,δ
(Ωδ

+) + ‖v‖V2
β,δ

(Ωδ
−).

Proposition 3.1. Assume that κσ 6= −1 and that Assumption 1 holds. Then there is some δ0 > 0
such that the operator Aδ : D(Aδ) → L2(Ω) defined by (2) is an isomorphism for all δ ∈ (0; δ0].
Moreover, there holds v ∈ H2(Ωδ

±) for all v ∈ D(Aδ) and, for any β ∈ (1/2; 3/2), there exists
Cβ > 0 independent of δ such that

Cβ ≤ inf
v∈D(Aδ)\{0}

‖Aδv‖V0
β, δ

(Ω)

‖v‖V2
β,δ

(Ω\Γδ)
, ∀δ ∈ (0; δ0]. (22)

Proof. We will build explicitly the inverse of Aδ. We first construct a linear map Rδ : L2(Ω) →
D(Aδ) in the following manner. Take any element f ∈ L2(Ω). Decompose it in an inner and an
outer contribution,

f(x) = g(x) +G(x/δ) with g(x) = χ√
δ(r)f(x) and G(ξ) = ψ√

δ(δρ)f(δξ).

Let us emphasize that according to the definition of χ, ψ (see (5)), there holds χ√
δ + ψ√

δ = 1.
Moreover, since ψ√

δ = 1 for r ≤
√
δ and ψ√

δ = 0 for r ≥ 2
√
δ, supp(G) (the support of G) is

bounded in R3. As a consequence, for all ε ∈ R, δ > 0, we have g ∈ V0
β−ε,δ(Ω) and G ∈ V0

β+ε(R3).
Besides, for ε ≥ 0, the following estimates are valid:

‖g‖V0
β−ε,δ

(Ω) = ‖(δ + r)β−εg‖
Ω\B(O,

√
δ)

≤ Cδ−ε/2 ‖(δ + r)βg‖
Ω\B(O,

√
δ)

≤ δ−ε/2 ‖f‖V0
β, δ

(Ω) (23)

and ‖G‖V0
β+ε

(R3) = ‖(1 + ρ)β+εG‖B(O,2/
√

δ)

≤ C δ−ε/2‖(1 + ρ)βG‖B(O,2/
√

δ) ≤ C δ−β−3/2−ε/2 ‖f‖V0
β, δ

(Ω).
(24)

Here and in the sequel, C > 0 denotes a constant, which can change from one line to another,
depending on β, ε but not on δ. The last inequality in (24) has been obtained making the change
of variables x = δξ. This explains the appearance of the term δ−3/2−β. Let us choose ε > 0 small
enough so that [β − ε;β + ε] ∈ (1/2; 3/2). Let us consider v ∈ D(Aβ−ε), V ∈ D(Bβ+ε) such that

Aβ−εv = g, Bβ+εV = δ2G,
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where Aβ−ε and Bβ+ε were introduced respectively in (9) and (19). Proposition 2.1 and Proposition
2.4 coupled with Assumption 1 ensure that v, V are well-defined and that they satisfy the estimates

‖v‖V2
β−ε

(Ω) ≤ C ‖g‖V0
β−ε

(Ω) ≤ C ‖g‖V0
β−ε,δ

(Ω), ‖V ‖V2
β+ε

(R3\Γ) ≤ C δ2‖G‖V0
β+ε

(R3). (25)

Finally, we define the operator Rδ such that for all f ∈ L2(Ω), Rδf = ûδ with

ûδ(x) := χδ(r)v(x) + ψ(r)Vδ(x), where Vδ(x) := V (x/δ). (26)

Since V ∈ D(Bβ), there holds Rδf ∈ H2(Ωδ
±). Moreover, we have [σ∂nV ]Γ = 0 so that Rδf = ûδ

belongs to D(Aδ). Now observe that, since r ≤ r + δ ≤ 2r on supp(χδ), there exists a constant
C > 0 independent of δ such that ‖χδv‖V2

β,δ
(Ω) ≤ C‖χδv‖V2

β
(Ω). Hence, using (23)-(25) with ε = 0

we can check (work as in [28, Lem 2]) that

‖Rδf‖V2
β,δ

(Ω\Γδ) = ‖ûδ‖V2
β,δ

(Ωδ
−) + ‖ûδ‖V2

β,δ
(Ωδ

+) ≤ C ‖f‖V0
β, δ

(Ω). (27)

We wish to prove that Rδ is an approximate inverse of Aδ. Practically, we are going to show that
ûδ satisfies div(σδ∇ûδ) = f δ for some source term f δ close to f . A direct computation yields

−div(σδ∇ûδ) = −
[
div(σδ∇·), χδ

]
v −

[
div(σδ∇·), ψ

]
Vδ − χδ div(σδ∇vδ) − ψ div(σδ∇Vδ)

= −
[
div(σδ∇·), χδ

]
v −

[
div(σδ∇·), ψ

]
Vδ + χδ χ√

δ f + ψ ψ√
δ f

= −
[
div(σδ∇·), χδ

]
v −

[
div(σδ∇·), ψ

]
Vδ + f.

(28)

In the above equalities, the commutator [A,B] is defined by [A,B] = AB − BA. Since we have
δ ≤ r ≤ 2δ on the support of

[
div(σδ∇·), χδ

]
and 1 ≤ r ≤ 2 on the support of

[
div(σδ∇·), ψ

]
, we

find that div(σδ∇ûδ) ∈ V0
β, δ(Ω). Now, introduce the operator Kδ : V0

β, δ(Ω) → V0
β, δ(Ω) such that

for all f ∈ V0
β, δ(Ω), Kδf denotes the function verifying

−div(σδ∇ûδ) = f + Kδf.

From (28), we know that Kδf = −
[
div(σδ∇·), χδ

]
v −

[
div(σδ∇·), ψ

]
Vδ. Let us evaluate the norm

of Kδ. First, remark that

|∇χδ| ≤ C δ−1 and |∆χδ| ≤ C δ−2. (29)

Defining, for t > 0, the set Qt := {x ∈ R3 | t < |x| < 2t}, we can write

‖
[
div(σδ∇·), χδ

]
v‖V0

β, δ
(Ω) ≤ ‖(r + δ)βσ+∇χδ · ∇v‖Ω + ‖(r + δ)βσ+∆χδ v‖Ω

≤ C (δ−1‖(r + δ)β∇v‖Qδ + δ−2‖(r + δ)βv‖Qδ )
≤ C δε (‖rβ−ε−1∇v‖Qδ + ‖rβ−ε−2v‖Qδ )
≤ C δε ‖v‖V2

β−ε
(Ω) ≤ C δε/2 ‖f‖V0

β, δ
.

(30)

In (30), the last inequality comes from (25), (23). Proceeding similarly, we find ‖
[
div(σδ∇·), ψ

]
Vδ‖V0

β, δ
(Ω) ≤

C δε/2 ‖f‖V0
β, δ

. Therefore, for all f ∈ V0
β, δ(Ω), there holds ‖Kδf‖V0

β, δ
(Ω) ≤ C δε/2 ‖f‖V0

β, δ
(Ω). This

proves that the norm of Kδ : V0
β, δ(Ω) → V0

β, δ(Ω) tends to zero when δ → 0. As a consequence,
Id + Kδ is invertible for δ small enough.

From this discussion, since Aδ · Rδf = (Id + Kδ)f , we conclude that the operator Aδ admits
Rδ · (Id + Kδ)−1 as a continuous inverse for δ small enough. This proves that there exists δ0 > 0
such that Aδ is an isomorphism for all δ ∈ (0; δ0]. Formula (26) implies that if v ∈ D(Aδ) veri-
fies Aδv = f and if Aδ is invertible, then we have v = Rδ · (Id + Kδ)−1f ∈ H2(Ωδ

±). Finally, we
obtain (22) from estimates (27) and (30) which provide respectively uniform bounds of Rδ and
(Id + Kδ)−1.
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3.2 Asymptotic expansion for the source term problem

Now that we know that problem (20) is uniquely solvable for δ small enough, we can think of
providing an asymptotic expansion of its solution uδ as δ goes to zero. This is precisely the goal
of the present section. When δ → 0, as previously observed, the inclusion of negative material
disappears. This leads us naturally to consider the following problem

Find v ∈ H1
0(Ω) such that

−σ+∆v = f in Ω.
(31)

Here, f ∈ L2(Ω) is the same source term as the one of (20). We have L2(Ω) ⊂ V0
β(Ω) for all β ∈

(1/2; 3/2). Therefore, Proposition 2.1 ensures that Problem (31) has a unique solution v = (A0)−1f
satisfying, for all β ∈ (1/2; 3/2), v ∈ V2

β(Ω). In addition, since f ∈ L2(Ω), it is known (see [27,
Chap 1]) that v − v(0) belongs to V2

0(Ω) with the estimate

|v(0)| + ‖v − v(0)‖V2
0(Ω) ≤ C ‖f‖Ω. (32)

In next proposition, we prove that for δ small enough, v is a good approximation of uδ, the unique
solution to Problem (20). To proceed, from v, we define another function Rδf by the formula

Rδf := χδ v + ψδ v(0), (33)

where χδ, ψδ were introduced in (5). The operator Rδ is clearly linear, and estimate (32) indicates
that it maps continuously L2(Ω) into H2(Ω \ Γδ). Observe in addition that, since Rδv is constant
in a neighbourhood of Ωδ

−, we actually have Rδf ∈ D(Aδ). The following result is obtained by
observing that Rδ approximates both (Aδ)−1 and (A0)−1.
Proposition 3.2. Assume that κσ 6= −1 and that Assumption 1 holds. Then for any β ∈ (1/2, 3/2),
there exist constants Cβ, δ0 > 0 independent of δ such that

sup
f∈L2(Ω)\{0}

‖(A0)−1f − (Aδ)−1f‖V2
β,δ

(Ω\Γδ)

‖f‖Ω
≤ Cβ δ

β, ∀δ ∈ (0; δ0]. (34)

Proof. Take any f ∈ L2(Ω) and for δ small enough, set uδ := (Aδ)−1f , ûδ := Rδf , ṽ := v − v(0)
where v is the solution to (31). Since 1 = χδ + ψδ, we have ∇ψδ = −∇χδ and ∆ψδ = −∆χδ. This
implies

−div(σδ∇(uδ − ûδ)) = f + div(σδ∇ûδ)
= f + σ+χδ∆v + 2σ+∇χδ · ∇ṽ + σ+ṽ∆χδ

= f(1 − χδ) + 2σ+∇χδ · ∇ṽ + σ+ṽ∆χδ := f̂ δ.

What precedes can be rewritten (Id − Aδ · Rδ)f = f̂ δ. Using (29), we find

‖f̂ δ‖V0
β, δ

(Ω) ≤ ‖f(1 − χδ)‖V0
β, δ

(Ω) + ‖2σ+∇χδ · ∇ṽ‖V0
β, δ

(Ω) + ‖σ+ṽ∆χδ‖V0
β, δ

(Ω)

≤ C (‖(r + δ)βf‖B(O,2δ) + δ−1‖(r + δ)β∇ṽ‖Qδ + δ−2‖(r + δ)β ṽ‖Qδ )
≤ C (δβ ‖f‖Ω + δβ ‖ṽ‖V2

0(Ω)) ≤ C δβ ‖f‖Ω.

To obtain the last line of the above inequalities, we have used (32). This proves that ‖(Id − Aδ ·
Rδ)f‖V0

β,δ
(Ω) ≤ Cδβ‖f‖Ω for all f ∈ L2(Ω). Now, observe that Aδ · Rδf = A0 · Rδf . Therefore, we

also have ‖(Id − A0 · Rδ)f‖V0
β,δ

(Ω) ≤ Cδβ‖f‖Ω for all f ∈ L2(Ω). From Proposition 3.1 and Lemma
3.1 hereafter, we deduce

‖(A0)−1f − (Aδ)−1f‖V2
β,δ

(Ω\Γδ)

≤ ‖(A0)−1f − Rδf‖V2
β,δ

(Ω\Γδ) + ‖(Aδ)−1f − Rδf‖V2
β,δ

(Ω\Γδ)

≤ C‖f − A0 · Rδf‖V0
β,δ

(Ω) + C‖f − Aδ · Rδf‖V0
β,δ

(Ω) ≤ Cδβ‖f‖Ω.

(35)

In (35), C > 0 is a constant, which can change from one line to another, independent of δ, f . With
(35), we finally obtain (34).
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The following lemma is a technical result needed in the proof of Proposition 3.2. It claims that the
stability property (22) for (Aδ)−1 is also satisfied by (A0)−1.
Lemma 3.1. For any β ∈ (1/2, 3/2), there exist constants Cβ, δ0 > 0 independent of δ such that

Cβ ≤ inf
v∈D(A0)\{0}

‖A0v‖V0
β,δ

(Ω)

‖v‖V2
β,δ

(Ω\Γδ)
, ∀δ ∈ (0; δ0].

Proof. Decompose any element v ∈ D(A0) as v(x) = χδ(x)v(x) + Vδ(x/δ) where Vδ(x/δ) =
ψδ(x)v(x). We have supp(χδv) ⊂ Ω \ B(O, 2δ), and supp(Vδ) ⊂ B(O, 2). Observe that D(A0) ⊂
V2

β(Ω) so that, according to Proposition 2.1, there holds ‖v‖V2
β

(Ω) ≤ C‖∆v‖V0
β

(Ω). Here and in the
sequel, C > 0 denotes a constant independent of δ which can change from one line to another. As
a consequence, we can write

‖χδv‖V2
β,δ

(Ω) ≤ C ‖v‖V2
β,δ

(Ω\B(O,2δ)) ≤ C ‖v‖V2
β

(Ω\B(O,2δ))

≤ C ‖v‖V2
β

(Ω) ≤ C ‖Aβv‖V0
β

(Ω) ≤ C ‖A0v‖V0
β,δ

(Ω).
(36)

In (36), we used that r ≤ r + δ ≤ 2r in Ω \ B(O, 2δ) and that ‖v‖V0
β

(Ω) ≤ ‖v‖V0
β,δ

(Ω) since
β ≥ 0. For |ξ| ≥ 2, there holds Vδ(ξ) = 0. Therefore, the usual elliptic a priori estimates give
‖Vδ‖V2

β
(R3) ≤ C‖∆Vδ‖V0

β
(R3). Making the change of variables ξ = x/δ, we deduce

‖ψδv‖V2
β,δ

(Ω) ≤ C‖∆(ψδv)‖V0
β,δ

(Ω)

≤ C ‖ψδ∆v‖V0
β,δ

(Ω) + C δ−1‖∇v‖V0
β,δ

(Qδ) + C δ−2‖v‖V0
β,δ

(Qδ)

≤ C ‖A0v‖V0
β,δ

(Ω) + C δ−1‖∇v‖V0
β

(Qδ) + C δ−2‖v‖V0
β

(Qδ)

≤ C ‖A0v‖V0
β,δ

(Ω) + C ‖v‖V2
β

(Ω)

≤ C ‖A0v‖V0
β,δ

(Ω) + C ‖Aβv‖V0
β

(Ω) ≤ C ‖A0v‖V0
β,δ

(Ω).

(37)

There only remains to gather (36) and (37) that hold for any element v ∈ D(A0) and any δ ∈ (0; δ0].
This leads to the conclusion of the proof.

Error estimate (34) can also be formulated in L2–norm. Indeed, observe that there exists a constant
independent of δ such that 1 ≤ C/(|x| + δ) for all x ∈ Ω. This implies ‖v‖Ω ≤ C2−β‖v‖V0

β−2,δ
(Ω) ≤

C2−β‖v‖V2
β,δ

(Ω\Γδ) for all v ∈ H2(Ω \ Γδ). From Proposition 3.2, we deduce the following result.

Corollary 3.1. Assume that κσ 6= −1 and that Assumption 1 holds. Then for any ε ∈ (0; 1), there
exist constants Cε, δ0 > 0 independent of δ such that

sup
f∈L2(Ω)\{0}

‖(A0)−1f − (Aδ)−1f‖Ω
‖f‖Ω

≤ Cε δ
3/2−ε, ∀δ ∈ (0; δ0]. (38)

Remark 3.1. Notice that Proposition 3.2 and Corollary 3.1 prove that the function v defined in
(31) is a good approximation of uδ, the unique solution to Problem (20). Indeed, from (34) with
β = 1 and from (38), we can write, for all ε ∈ (0; 1) and for δ small enough,

‖uδ − v‖H1
0(Ω) ≤ C δ‖f‖Ω and ‖uδ − v‖Ω ≤ Cε δ

3/2−ε‖f‖Ω.

This ends the asymptotic analysis of the source term problem. In the sequel, we turn back to the
initial spectral problem. To make the transition, observe that the result of Corollary 3.1 can be
rephrased as (Aδ)−1 = (A0)−1 +O(δ3/2−ε) considering (Aδ)−1, (A0)−1 as operators mapping L2(Ω)
to L2(Ω). Since these two operators are self-adjoint, a direct application of Theorem 4.10 of Chapter
V of [19] yields that the spectra of (Aδ)−1 and (A0)−1 are closed to each other.
Proposition 3.3. Assume that κσ 6= −1 and that Assumption 1 holds. Then for any ε ∈ (0; 1),
there exist constants Cε, δ0 > 0 independent of δ such that

sup
µ∈S(A0)

inf
λ∈S(Aδ)

∣∣∣ 1
λ

− 1
µ

∣∣∣ + sup
λ∈S(Aδ)

inf
µ∈S(A0)

∣∣∣ 1
λ

− 1
µ

∣∣∣ ≤ Cε δ
3/2−ε, ∀δ ∈ (0; δ0]. (39)
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4 Study of the positive spectrum
In this section, we exploit Proposition 3.3 to prove our main result concerning the positive spectrum
of Aδ, namely, it converges to the spectrum of A0.

Theorem 4.1. Assume that κσ 6= −1 and that Assumption 1 holds. Let n ∈ N∗ be a fixed number
and let λδ

n > 0 (resp. µn > 0) refer to the corresponding eigenvalue of the operator Aδ (resp. A0).
Then there exist constants Cε, δ0 > 0, depending on n, ε but independent of δ, such that

|µn − λδ
n| ≤ Cε δ

3/2−ε, ∀δ ∈ (0; δ0]. (40)

Proof. Pick ε ∈ (0; 1). Let µn, n ∈ N∗, be an eigenvalue of multiplicity κ ≥ 1 of the far field
operator A0. To set our ideas and without loss of generality, we assume that there holds

µn−1 < µn = · · · = µn+κ−1 < µn+κ

if n > 1. Estimate (34) establishes strong convergence of (Aδ)−1 toward (A0)−1. Therefore,
we can apply Theorem 3.16 of Chapter IV of [19] which ensures that for C > 0 large enough,
for all δ ∈ (0; δ0] and all i ∈ {1, . . . , n}, the total multiplicity of the spectrum of (Aδ)−1 in Oδ

i :=
[µ−1

i −C δ3/2−ε;µ−1
i +C δ3/2−ε] is equal to κi, the multiplicity of µ−1

i . We denote λδ
k ≤ · · · ≤ λδ

k+κ−1,
for some k ∈ N∗, the eigenvalues of Aδ whose inverses are located in [µ−1

n −C δ3/2−ε;µ−1
n +C δ3/2−ε].

Now, we wish to prove that for all δ ∈ (0; δ0], we have k = n. For all i < n and δ ∈ (0; δ0], we
just showed that there are exactly κi eigenvalues of (Aδ)−1 in Oδ

i . As a consequence, the relation
k ≥ n is valid. Now, assume that k > n for some δ ∈ (0; δ0]. In this case, because of the relation
on the multiplicity, there exists some j ∈ N∗ such that 1/λδ

j /∈ ∪n−1
i=1 Oδ

i . If the C of the definition
of the Oδ

i is larger than the Cε of estimate (39), this is impossible. Therefore, we have k = n and
|1/µn − 1/λδ

n| ≤ C δ3/2−ε. To conclude, it remains to notice that the latter inequality is equivalent
to (40) because µn > 0.

Remark 4.1. Observe that in (40), the dependence of Cε with respect to n ∈ N∗ can be explicitly
computed since there holds Cε = O(µ2

n) when n → +∞.

5 Study of the negative spectrum

The presence of negative eigenvalues in the spectrum of Aδ is due to the small piece of negative
material in the domain Ω. We will see that the behaviour of negative eigenvalues is driven by the
near field structure of the operator Aδ. More precisely, we will prove that the negative part of the
spectrum of Aδ is asymptotically equivalent (in a precise meaning that we shall provide later) to
the negative part of the spectrum of δ−2B∞. We shall proceed in two steps (so called inverse and
direct reductions) following and adapting the approach considered in [28].

Let us first introduce notation adapted to the study of the operator Aδ close to the small in-
clusion. All through this section, we shall make intensive use of the fast variable ξ = x/δ. In this
rescaled variable, the domain Ω becomes the δ–dependent domain Ξδ := {ξ ∈ R3 | δξ ∈ Ω} while
the operator Aδ is changed into the operator Bδ : D(Bδ) → L2(Ξδ) defined by

Bδwδ = −div(σ∞∇wδ)
D(Bδ) := {wδ ∈ H1

0(Ξδ) | div(σ∞∇wδ) ∈ L2(Ξδ) }.

A simple calculus shows directly that S(Bδ) = {δ2λ | λ ∈ S(Aδ)}. Therefore, S(Bδ) consists in
the discrete set of ordered real values · · · ≤ δ2λδ

−2 ≤ δ2λδ
−1 < 0 ≤ δ2λδ

1 ≤ δ2λδ
2 ≤ . . . . Here we will

focus on the negative part of this set, as we want to show that S(Bδ) \ R+ and S(B∞) \ R+ get
close to each other as δ → 0. From the study of §3.2, we can already state the following preliminary
result concerning the negative spectrum of Aδ.
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Lemma 5.1. Assume that κσ 6= −1 and that Assumption 1 holds. Then for any ε ∈ (0; 1), there
exist constants Cε, δ0 > 0 independent of δ such that

S(Aδ) ∩ (−Cε δ
−3/2+ε; 0) = ∅, ∀δ ∈ (0; δ0]. (41)

Proof. Proposition 3.3 ensures that

sup
λ∈S(Aδ)

inf
µ∈S(A0)

∣∣∣ 1
λ

− 1
µ

∣∣∣ ≤ Cε δ
3/2−ε, ∀δ ∈ (0; δ0].

But we know that the spectrum of A0 is strictly positive. Therefore, for all δ ∈ (0; δ0], we have
supλ∈S(Aδ)\R+

|λ|−1 ≤ Cε δ
3/2−ε. This implies (41).

5.1 Inverse reduction

In this section, we establish that if µ−n is an eigenvalue of B∞, then close to δ−2µ−n there is an
element of the negative part of the spectrum of Bδ. The method is classical: from eigenpairs of the
limit operator B∞, we construct approximation of eigenpairs of Bδ. Then, we use the well-known
lemma on “near eigenvalues and eigenfunctions” (see [44]). Since we start from eigenpairs of the
limit problem to build eigenpairs for the original problem, this approach is usually called inverse
reduction. We will see that the exponential decay of the eigenfunctions of B∞ established in §2.2
induces exponential convergence.

Lemma 5.2. Assume that κσ 6= −1. For any µ ∈ S(B∞) \ R+, there exist C, δ0 > 0 independent
of δ such that

inf
wδ∈D(Bδ)\{0}

‖Bδwδ − µwδ‖Ξδ

‖wδ‖Ξδ

≤ Cδ exp
(

− 1
2δ

√
|µ|
σ+

)
, ∀δ ∈ (0; δ0]. (42)

Proof. Pick an arbitrary µ ∈ S(B∞)\R+ and consider a corresponding eigenfunction w that satisfies
‖w‖R3 = 1. Set wδ ∈ D(Bδ) by wδ = ψδw, where ψδ is the function such that ψδ(ξ) := ψ(δξ) (see
(4) for the defintion of ψ). Let us use wδ to prove (42). We have div(σ∞∇wδ) = ψδ div(σ∞∇w) +
2σ+∇ψδ · ∇w + σ+w∆ψδ. Since ∇ψδ, ∆ψδ vanish outside Q1/δ = {ξ ∈ R3 | δ−1 < |ξ| < 2δ−1},
applying Proposition 2.3, we see that for γ =

√
|µ|/σ+, we have

‖Bδwδ − µwδ‖2
Ξδ = ‖2σ+∇ψδ · ∇w + σ+w∆ψδ‖2

Ξδ

≤ C (δ2‖∇w‖2
Q1/δ + δ4‖w‖2

Q1/δ )

≤ C δ2 exp(−γ/δ)
∫
R3

(|w|2 + |∇w|2) exp(γ|ξ|) dξ.

On the other hand, using the dominated convergence theorem, we see that ‖wδ‖Ξδ tends to ‖w‖R3 =
1 when δ → 0. As a consequence, we have ‖wδ‖Ξδ ≥ c > 0 for δ small enough, so that ‖Bδwδ −
µwδ‖Ξδ/‖wδ‖Ξδ = O(δ exp(−γ/2δ)).

To obtain the next proposition, we use Lemma 5.2 and we apply the classical result on “near
eigenvalues and eigenfunctions” (see Lemma 6.1 in appendix) to Bδ : D(Bδ) → L2(Ξδ). Observe
that the latter operator, which is self-adjoint, is indeed normal.

Proposition 5.1. Assume that κσ 6= −1. For any µ ∈ S(B∞) \ R+, there exists C, γ, δ0 > 0
independent of δ such that

inf
λ∈S(Aδ)

|λ− δ−2µ| ≤ C exp(−γ/δ), ∀δ ∈ (0; δ0]. (43)

With Lemma 5.1, we have seen that for all ε > 0, the set S(Aδ) ∩ (−Cε δ
−3/2+ε; 0) is empty for δ

small enough. The next result indicates that, as δ → 0, the negative eigenvalues of Aδ tend to −∞
not too fast though.
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Corollary 5.1. Assume that κσ 6= −1. Let n ∈ N∗ be a fixed number and let λδ
−n < 0 refer

to the corresponding eigenvalue of the operator Aδ as defined by Proposition 3. Then, we have
lim supδ→0 δ

2|λδ
−n| < +∞.

Proof. Assume that there exist n ∈ N∗ and a sequence δk → 0 such that limk→+∞ δ2
kλ

δk
−n = −∞.

Since we have λ−m ≤ λ−n for m ≥ n, we conclude that limk→+∞ δ2
kλ

δk
−m = −∞ for all m ≥ n. So

only the sequences (δ2
kλ

δk
−m)k≥0 with m ∈ {1, . . . , n− 1} may possibly remain bounded.

Now, consider 0 > µ`1 > · · · > µ`n n distinct elements of S(B∞) \ R+. According to Propo-
sition 5.1, there exist constants C, γ, δ0 > 0 independent of δ such that each interval [µ`m −
C δ2 exp(−γ/δ);µ`m + C δ2 exp(−γ/δ)], m = 1 . . . n, contains at least one element of the form
δ2λδ

j for all δ ∈ (0; δ0]. This imposes that we have lim supδ→0 δ
2|λδ

j | < +∞ for at least n dis-
tinct eigenvalues λδ

j ∈ S(Aδ). This is in contradiction with what precedes. Therefore, there holds
lim supδ→0 δ

2|λδ
−n| < +∞ for all n ∈ N∗.

5.2 Direct reduction

From Proposition 5.1, we know that for all n ∈ N∗, if µ−n is an eigenvalue of B∞, then close to
µ−n there is a negative eigenvalue of Bδ. In this section, we prove the converse assertion. We use
the same technique as in the previous section: from eigenpairs of Bδ, we build approximations of
eigenpairs of the limit operator B∞. Then, we conclude thanks to the lemma on “near eigenvalues
and eigenfunctions”. This process is called the direct reduction because we start from eigenpairs of
the original problem to construct eigenpairs of the limit problem. As it is often the case, the direct
reduction will be slightly more complicated than the inverse reduction. We start by a preliminary
lemma where we show a localization effect for the eigenfunctions of Bδ associated to the negative
eigenvalues.

Lemma 5.3. Assume that κσ 6= −1 and that Assumption 1 holds. Let n ∈ N∗ be a fixed number
and let wδ

−n, such that ‖wδ
−n‖Ξδ = 1, refer to an eigenfunction of Bδ corresponding to the negative

eigenvalue δ2λδ
−n. Then, we have

lim sup
δ→0

∫
Ξδ

(δ2|λδ
−n| |wδ

−n(ξ)|2 + |∇wδ
−n(ξ)|2) exp

|ξ|

√
δ2|λδ

−n|
σ+

 dξ < +∞. (44)

Proof. To simplify the notation, let us drop the index “−n”. We adopt here the same approach as
in Proposition 2.3. Let us introduce the weight function W δ such that W δ(ξ) := exp(γδ) for |ξ| ≤ 1
and W δ(ξ) := exp(γδ|ξ|) for |ξ| ≥ 1, with γδ = (|δ2λδ|/σ+)1/2/2. Since −div(σ∞∇wδ) = δ2λδwδ in
Ξδ, a computation nearly identical to that of the proof of Proposition 2.3 shows that

δ2|λδ|‖W δwδ‖2
Ξδ + σ+‖W δ∇wδ‖2

Ξδ ≤ 2 exp(2γδ) (σ+ + |σ−|) ‖∇wδ‖2
Ξ− . (45)

From Corollary 5.1, we know that the map δ 7→ δ2|λδ| (and so δ 7→ γδ) is bounded as δ → 0.
In addition, applying (12) yields a constant C > 0 independent of δ, λδ, such that ‖∇wδ‖Ξ− ≤
C(1 + δ2|λδ|)‖wδ‖Ξ− . Since ‖wδ‖Ξ− ≤ ‖wδ‖Ξδ = 1, we deduce that the right-hand side of the
estimate (45) remains bounded uniformly as δ → 0. This ends the proof.

Note that if wδ
−n is an eigenfunction of Bδ with ‖wδ

−n‖Ξδ = 1, then the function vδ such that
vδ(x) = δ3/2wδ

−n(x/δ) is an eigenfunction of Aδ with ‖vδ‖Ξδ = 1. Therefore, the previous lemma
shows that eigenfunctions of Aδ associated with negative eigenvalues get more and more localized
around the small negative inclusion as δ → 0. Now, we can construct quasi-eigenfunctions for B∞

from eigenfunctions of the operator Bδ.
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Lemma 5.4. Assume that κσ 6= −1 and that Assumption 1 holds. Let n ∈ N∗ be a fixed number and
let δ2λδ

−n < 0 refer to the corresponding eigenvalue of the operator Bδ. Then there exist constants
C, γ, δ0 > 0, depending on n but independent of δ, such that

inf
w∈D(B∞)\{0}

‖B∞w − δ2λδ
−nw‖R3

‖w‖R3
≤ C δ exp(−γ/δ), ∀δ ∈ (0; δ0]. (46)

Proof. Once again, we omit the index “−n”. Let us consider an eigenfunction wδ of Bδ associated
to the eigenvalue δ2λδ. We assume that there holds ‖wδ‖Ξδ = 1. Set w := ψδ wδ where ψδ is such
that ψδ(ξ) := ψ(δξ) (ψ is the cut-off function defined in (4)). Let us show first that

lim
δ→0

‖w‖R3 = 1. (47)

Introducing χδ = 1 − ψδ, we can write ‖w‖R3 = ‖ψδwδ‖R3 ≥ ‖wδ‖Ξδ − ‖χδwδ‖Ξδ . According
to Lemma 5.1, there exists a constant C > 0 independent of δ such that |λδ| ≥ C δ−1 so that
δ2|λδ| ≥ C δ for δ small enough. In addition, observe that |ξ| ≥ 1/δ for ξ ∈ supp(χδ). As a
consequence, applying Lemma 5.3 above, we can write

‖χδwδ‖2
Ξδ ≤

exp
(

−
√

|λδ|/σ+
)

δ2|λδ|

∫
Ξδ
δ2|λδ| |wδ(ξ)|2 exp

(
|ξ|
√
δ2|λδ|
σ+

)
dξ ≤ C1δ

−1 exp(−C2δ
−1/2).

This implies limδ→0 ‖χδwδ‖Ξδ = 0 and establishes (47). Now, we estimate ‖B∞w − δ2λw‖R3 . We
compute div(σ∞∇w) = ψδ div(σ∞∇wδ) + 2σ+∇ψδ · ∇wδ + σ+w

δ∆ψδ. Observing that |∇ψδ| ≤
C δ, |∆ψδ| ≤ C δ2 are non null only on Q1/δ = {ξ ∈ R3 | δ−1 < |ξ| < 2δ−2} and recalling that
div(σ∞∇wδ) = δ2λδwδ, we conclude that there exists a constant C > 0 independent of δ such that

‖B∞w − δ2λδw‖R3 = ‖2σ+∇ψδ · ∇wδ + σ+w
δ∆ψδ‖Ξδ

≤ C (δ‖∇wδ‖Q1/δ + δ2‖wδ‖Q1/δ )
(48)

Using Lemma 5.3 and working as in the beginning of this proof, we can show that lim supδ→0 ‖wδ‖Ξδ +
‖∇wδ‖Ξδ < +∞. This remark, combined with the above inequality shows that ‖B∞w−δ2λδw‖R3 =
O(δ). Since B∞ is self-adjoint, we can apply the lemma on “near eigenvalues and eigenfunctions”
(see Lemma 6.1 in appendix) to obtain

inf
µ∈S(B∞)

|µ− δ2λδ| = O(δ) (49)

We deduce in particular that there exists δ0 > 0 independent of δ such that

δ2|λδ| ≥ |µ−1|/2, ∀δ ∈ (0; δ0]. (50)

Now, let us come back to (48). Since δ−1 ≤ |ξ| ≤ 2δ−1 on Q1/δ, making use of (50) combined with
Lemma 5.3, we deduce that there exists a constant C > 0 independent of δ such that ‖B∞wδ −
δ2λδ

−nw
δ‖R3 ≤ Cδ exp(−δ−1√|µ−1|/(2σ+)). This, together with (47) leads to the conclusion of the

proof.

Apply one last time Lemma 6.1 in appendix to obtain the

Proposition 5.2. Assume that κσ 6= −1 and that Assumption 1 holds. Let n ∈ N∗ be a fixed
number and let λδ

−n < 0 refer to the corresponding eigenvalue of the operator Aδ. Then there exist
constants C, γ, δ0 > 0, depending on n but independent of δ, such that

inf
µ∈S(B∞)

|λδ
−n − δ−2µ| ≤ C exp(−γ/δ), ∀δ ∈ (0; δ0].
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5.3 Conclusion

In the next theorem, we state the main result of the paper concerning the negative spectrum of the
original operator Aδ.

Theorem 5.1. Assume that κσ 6= −1 and that Assumption 1 holds. Let n ∈ N∗ be a fixed number
and let λδ

−n < 0 (resp. µ−n < 0) refer to the corresponding eigenvalue of the operator Aδ (resp.
B∞). Then there exist constants C, γ, δ0 > 0, depending on n but independent of δ, such that

|λδ
−n − δ−2µ−n| ≤ C exp(−γ/δ), ∀δ ∈ (0; δ0].

Proof. Pick some arbitrary n ∈ N∗. Corollary 5.1 ensures that the map δ 7→ δ2λδ
−n remains bounded

on (0; δ0] for some δ0 > 0. From Proposition 5.2, we deduce that δ 7→ δ2λδ
−n is valued in

In∪
i=1

[
µ−i − Cδ2 exp(−γ/δ) ; µ−i + Cδ2 exp(−γ/δ)

]
,

for some In < +∞. Therefore, to prove the result of this theorem, it is sufficient to show that for δ
small enough, δ 7→ δ2λδ

−n does not meet the interval [µ−i − Cδ2 exp(−γ/δ);µ−i + Cδ2 exp(−γ/δ)]
for i 6= n. Let us proceed by contradiction assuming that there exists a subsequence (δk) such that
limk→+∞ δk = 0 and limk→+∞ δ2

kλ
δk
−n = µ? ∈ S(B∞) \ R+, with µ? 6= µ−n. Choosing n closer to 1

if necessary, one may assume that there holds limδ→0 δ
2λδ

−p = µ−p for all p = 1, 2, . . . , n − 1 when
n ≥ 2. In other words, we consider the smallest n ∈ N∗ such that the set {δ2λδ

−n}δ∈(0;δ0] has at
least two distinct points of accumulation.

Notation. In the remaining of this proof, we will always consider values of δ ∈ {δk}k≥0. To
simplify notations, we will drop the subscript “k” in “δk”. This should not bring confusion. On
the other hand, in the sequel, the sequence (wδ

j )j∈Z will refer to an orthonormal Hilbert basis of
L2(Ξδ), where wδ

j is an eigenfunction of Bδ corresponding to δ2λδ
j .

Step 1. Assume first that µ? > µ−n. Let E ∞ refer to the eigenspace of B∞ associated to the
eigenvalue µ?. This is a finite dimensional space because µ? does not belong to the essential spectrum
of B∞. We introduce P∞ : L2(R3) → L2(R3) the continuous linear map such that Id − P∞ is the
spectral projector of B∞ onto E ∞. On the other hand, we denote J := {j ∈ N∗ |µ−j = µ?} ∪ {n}
and we set F δ := span{ψδwδ

j | j ∈ J} ⊂ D(B∞). Here and in the sequel, ψδ and χδ = 1−ψδ are the
cut-off functions defined in the proof of Lemma 5.4. Since µ? > µ−n, we know that for all δ ∈ (0; δ0],
there holds card(J) = dim E ∞ + 1, and that δ2λδ

−j → µ? for all j ∈ J (here, we use the assumption
that n ∈ N∗ is the smallest index such that {δ2λδ

−n}δ∈(0;δ0] has at least two distinct points of
accumulation). Moreover, remembering that (wδ

−j)j∈Z is an orthonormal family and observing that
limδ→0 ‖χδwδ

−j‖R3 = 0 (use the same arguments as in the proof of Lemma 5.4), one can show
that (ψδwδ

−j)j∈J is linearly independent for δ small enough. This implies dim F δ > dim E ∞.
As a consequence, according to [15, Thm 1.1], there exists vδ ∈ F δ such that ‖vδ‖R3 = 1 and
dist(vδ,E ∞) := inf{‖vδ − w‖R3 | w ∈ E ∞} = 1, which can be rewritten ‖P∞vδ‖R3 = 1, for δ > 0
small enough. Using again that limδ→0 ‖χδwδ

−j‖R3 = 0, we see that in the decomposition

vδ =
∑
j∈J

αδ
j ψ

δwδ
−j ,

where αδ
j ∈ C, there holds

∑
j∈J |αδ

j |2 → 1 when δ → 0. Denoting C = ( dist(µ?,S(B∞) \ {µ?}) )−2,
we can write

1 = ‖P∞vδ‖2
R3 ≤ C ‖(B∞ − µ?Id)P∞vδ‖2

R3

≤ C ‖(B∞ − µ?Id)vδ‖2
R3

≤ C ′ ∑
j∈J |αδ

j |2 ‖(B∞ − µ?Id)ψδwδ
−j‖2

R3

≤ C ′ ∑
j∈J |αδ

j |2
(

‖(B∞ − δ2λδ
−jId)ψδwδ

−j‖2
R3 + |µ? − δ2λδ

−j |2‖ψδwδ
−j‖2

R3
)
.
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We know, by assumption, that limδ→0 |µ? − δ2λδ
−j | = 0 for each j ∈ J . Moreover, we have shown

in the proof of Lemma 5.4 that limδ→0 ‖(B∞ − δ2λδ
−jId)ψδwδ

−j‖R3 = 0. As a consequence, the
inequality written above leads to a contradiction, which concludes the first step of the proof.

Step 2. The only remaining possibility is that µ? < µ−n. But recall that we have δ2λδ
−j ≤ δ2λδ

−n

for all j ≥ n. On the other hand, there holds limδ→0 δ
2λδ

−p = µ−p for all p = 1, 2, . . . , n − 1 (at
least, when n ≥ 2). Therefore, µ? < µ−n implies that for δ0 small enough, we have {δ2λδ

−n}δ∈(0;δ0] ∩
[µ−n − δ;µ−n + δ] = ∅. This is in contradiction with Proposition 5.1. We conclude that the case
µ? < µ−n is not possible either, which finishes the proof.

6 Numerical experiments in 2D

∂Ω

Ωδ
+ Ωδ

−

1

δ/2

δ

Figure 3: Geometry of the domains.

In this section, we approximate nu-
merically the spectrum of Problem
(1) set in a 2D domain. We consider
a 2D configuration for computational
reasons, the number of degrees of free-
dom being too important in 3D. Al-
though the analysis is slightly more
involved, we can prove that all the re-
sults we have established in 3D for the
spectrum of Aδ also hold in 2D. We
shall keep the same notations. First,
we detail the parameters used for the numerical experiments. Let Ω ⊂ R2 be the disk of radius
one centered at O. Define the ellipse Ξ− := {(x, y) ∈ R2 | (x/a)2 + (y/b)2 < 1} with a = 1/2 and
b = 1/4. For δ ∈ (0; 1], set Ωδ

− := δ Ξ− and Ωδ
+ := Ω \ Ωδ

− (see Figure 3). Introduce the function
σδ : Ω → R such that σδ = σ± in Ωδ

±, where σ+ = 1 and where σ− < 0 is a constant. We are
interested in the 2D version of the eigenvalue problem (1) whose variational formulation writes

Find (λδ, uδ) ∈ C × (H1
0(Ω) \ {0}) such that

(σδ∇uδ,∇v)Ω = λδ(uδ, v)Ω, ∀v ∈ H1
0(Ω).

(51)

Let us explain how to choose σ− so that Assumption 1 holds. Using [20, Prop 8], when the contrast
κσ = σ−/σ+ < 0 verifies κσ 6= −1, we can prove that the near field operator B∞ defined in (10) is
injective if and only if 2

κσ /∈ S := {ηk}+∞
k=1 ∪ {1/ηk}+∞

k=1, where ηk := |a− b|k + |a+ b|k

|a− b|k − |a+ b|k
.

It can be straightforwardly checked that (ηk)k is a sequence of numbers smaller than −1, strictly
increasing, which accumulates in −1. Moreover, for the selected geometry, we have η1 = −a/b = −2.
In order to satisfy Assumption 1, we will impose σ− = −2.5 so that κσ avoids the critical set S .
Now, we discretize Problem (51). Let us consider Ωh, Ωδ

±,h polygonal approximations of the domains
Ω, Ωδ

± satisfying Ωh = Ωδ
+,h ∪ Ωδ

−,h. We denote σδ
h : Ωh → R the function such that σδ

h = σ± in
Ωδ

±,h. Introduce (T δ
h )h a shape regular family of triangulations of Ωh, made of triangles. Here, h

refer to the mesh size. Moreover, we assume that, for any triangle τ , one has either τ ⊂ Ωδ
+,h or

τ ⊂ Ωδ
−,h. Define the family of finite element spaces

Vδ
h :=

{
v ∈ H1

0(Ωδ
h) such that v|τ ∈ P1(τ) for all τ ∈ T δ

h

}
,

2Notice that when Ξ− is a disk, i.e. when a = b, the set S reduces to {−1}.
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where P1(τ) is the space of polynomials of degree at most 1 on the triangle τ . Let us consider the
problem

Find (λδ
h, u

δ
h) ∈ C × (Vδ

h \ {0}) such that

(σδ
h∇uδ

h,∇vδ
h)Ωδ

h
= λδ

h(uδ
h, v

δ
h)Ωδ

h
, ∀vδ

h ∈ Vδ
h.

(52)

In the numerical experiments, we shall fix the mesh size h so that the number of triangles inside
the small inclusion Ωδ

−,h remains approximately constant. As a consequence, when δ goes to zero,
the mesh contains more and more triangles. We make this choice so as to capture the localized
eigenfunctions associated with the negative eigenvalues (see Figure 7). For more details concerning
the discretization process, we refer the reader to [5, 35, 11]. Nevertheless, we should emphasize that
in these three papers, only the source term problem associated with (51) is considered. To this day,
it seems that there exists no proof of convergence (as the mesh size tends to zero) of the standard
P1 Lagrange finite element method to approximate the spectral Problem (51). It stems from the
fact that the sign-changing of σδ prevents the use of usual approaches. For the computations, we
use the FreeFem++3 software while we display the results with Matlab4 and Paraview5.

In Figure 4, we display the positive eigenvalues of smallest modulus of Problem (52) with respect to
−log10 δ. The dotted lines represent the approximation of the eigenvalues of smallest modulus of the
limit operator A0 defined in (6). In other words, these dotted lines correspond to the spectrum of
the problem without the inclusion of negative material. We observe that S(Aδ) seems to converge
to S(A0) when the inclusion shrinks. This is in accordance with the analog of Theorem 4.1 in 2D.

In Figure 5, we present the behaviour of the negative eigenvalues of smallest modulus of Prob-
lem (52) with respect to −log10 δ. The numerical experiment suggests that the negative eigenvalues
of the operator Aδ tend to −∞ when δ goes to zero. This was established in 3D in Lemma 5.1.
Figure 6 confirms and clarifies this result: it indicates that the negative eigenvalues of Problem (52)
behave like δ−2µ, for some constant µ < 0, when δ → 0. This is coherent with the 2D version of
Theorem 5.1.

Eventually, on Figure 7, we display the eigenfunctions associated with the negative and positive
eigenvalues of smallest modulus for δ = 0.5 and for δ = 0.05. The eigenfunction associated with
the smallest positive eigenvalue appears independent of the size of the small inclusion. On the
contrary, we can observe the localization effect for the eigenfunction associated with the larger neg-
ative eigenvalue: when δ tends to zero, this eigenfunction is more and more concentrated around
the inclusion of negative material.

3FreeFem++, http://www.freefem.org/ff++/.
4Matlab, http://www.mathworks.se/.
5Paraview, http://www.paraview.org/.
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Figure 4: For a given δ ∈ (0; 1], we approximate the eigenvalues of smallest modulus of the operator
Aδ. Then, we make δ tend to zero. The figure represents the approximation of the positive spectrum
of Aδ with respect to −log10 δ. The dotted lines correspond to the approximation of the eigenvalues
of smallest modulus of the limit operator A0.
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Figure 5: For a given δ ∈ (0, 1], we approximate the eigenvalues of smallest modulus of the operator
Aδ. Then, we make δ tend to zero. The figure represents the approximation of the negative
spectrum of Aδ with respect to −log10 δ.
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Linear regression for the 1st negative eigenvalue: a = −2.0056

Figure 6: The figure represents the approximation of the negative eigenvalues of smallest modulus
of Aδ in logarithmic scale.

Figure 7: On the left (resp. on the right), approximation of the eigenfunction associated with the
negative (resp. positive) eigenvalue of smallest modulus. Above, δ = 0.5. Below, δ = 0.05. The
contrast κσ = σ−/σ+ is chosen equal to −2.5. We observe clearly the localization effect for the
eigenfunctions associated with the negative eigenvalues.

Appendix
In this appendix, we briefly recall an elementary result of spectral theory that we used three times
in this article in order to estimate the distance of a number to the spectrum of an operator. We
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provide a proof for the sake of completeness.

Lemma 6.1. Let H, equipped with the inner product (·, ·)H and the norm ‖ · ‖H, be a Hilbert space.
For any (a priori unbounded) normal linear operator A : D(A) ⊂ H → H we have

inf
λ∈S(A)

|λ− µ| ≤ inf
v∈D(A)\{0}

‖Av − µv‖H
‖v‖H

, ∀µ ∈ C.

Proof. Since A is normal then, according to the spectral theorem [3, Thm 6.6.1], it admits a spectral
decomposition A =

∫
S(A) ζdE(ζ) where E(ζ) refers to a spectral measure on H. Let dEv,v refer to

the measure associated to ζ 7→ (E(ζ)v, v)H. A spectral decomposition of A − µId is given by
A − µId =

∫
S(A)(ζ − µ)dE(ζ). Moreover the formula ‖Av − µv‖2

H =
∫
S(A) |ζ − µ|2dE(ζ) holds for

any v ∈ D(A). As a consequence, we have

‖v‖2
H inf

λ∈S(A)
|λ− µ|2 = inf

λ∈S(A)
|λ− µ|2

∫
S(A)

dEv,v(ζ) ≤
∫
S(A)

|ζ − µ|2dEv,v(ζ) = ‖Av − µv‖2
H.

Since this holds for any v ∈ D(A), we can divide by ‖v‖2
H and take the inf in the right hand side

of the estimate above, which yields the desired inequality.
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