Quasi-Lovász extensions on bounded chains - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Quasi-Lovász extensions on bounded chains

Résumé

We study quasi-Lovász extensions as mappings defined on a nonempty bounded chain C, and which can be factorized as f(x 1,…,x n ) = L(ϕ(x 1),…,ϕ(x n )), where L is the Lovász extension of a pseudo-Boolean function and is an order-preserving function. We axiomatize these mappings by natural extensions to properties considered in the authors’ previous work. Our motivation is rooted in decision making under uncertainty: such quasi-Lovász extensions subsume overall preference functionals associated with discrete Choquet integrals whose variables take values on an ordinal scale C and are transformed by a given utility function . Furthermore, we make some remarks on possible lattice-based variants and bipolar extensions to be considered in an upcoming contribution by the authors.
Fichier principal
Vignette du fichier
QuasiLov-Chains-IPMU2014.pdf (98.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01090634 , version 1 (26-09-2017)

Identifiants

Citer

Miguel Couceiro, Jean-Luc Marichal. Quasi-Lovász extensions on bounded chains. 15th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2014), Jul 2014, Montpellier, France. pp.199-205, ⟨10.1007/978-3-319-08795-5_21⟩. ⟨hal-01090634⟩
315 Consultations
58 Téléchargements

Altmetric

Partager

More