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Abstract. We study quasi-Lovász extensions as mappings f : Cn → IR
defined on a nonempty bounded chain C, and which can be factorized
as f(x1, . . . , xn) = L(φ(x1), . . . , φ(xn)), where L is the Lovász extension
of a pseudo-Boolean function ψ : {0, 1}n → IR and φ : C → IR is an
order-preserving function.
We axiomatize these mappings by natural extensions to properties con-
sidered in the authors’ previous work. Our motivation is rooted in de-
cision making under uncertainty: such quasi-Lovász extensions subsume
overall preference functionals associated with discrete Choquet integrals
whose variables take values on an ordinal scale C and are transformed
by a given utility function φ : C → IR.
Furthermore, we make some remarks on possible lattice-based variants
and bipolar extensions to be considered in an upcoming contribution by
the authors.
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1 Introduction and preliminary results

The discrete Choquet integral has been widely investigated in aggregation theory
due to its many applications, for instance, in decision making (see the edited
book [8]). A convenient way to introduce the discrete Choquet integral is via the
concept of Lovász extension.

1.1 Lovász extensions and the discrete Choquet integral

Let C be a chain under a linear order 6 or, equivalently, under a minimum ∧
or a maximum ∨; for instance, B := {0, 1} with the usual ordering given by
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0 < 1. Given a permutation σ ∈ Sn, where Sn denotes the set of permutations
on [n] = {1, . . . , n}, we define

Cnσ := {x = (x1, . . . , xn) ∈ Cn : xσ(1) 6 · · · 6 xσ(n)}.

For every A ⊆ [n], we denote by 1A the n-tuple whose i-th component is 1 if
i ∈ A and is 0 otherwise. For instance, 1∅ is the constant 0 tuple, denoted 0,
whereas 1[n] is the constant 1 tuple.

Consider an n-place pseudo-Boolean function, i.e. a function ψ : Bn → IR, and
define the set function vψ : 2

[n] → IR by vψ(A) = ψ(1A) for every A ⊆ [n]. Ham-
mer and Rudeanu [9] showed that such a function has a unique representation
as a multilinear polynomial of n variables

ψ(x) =
∑
A⊆[n]

aψ(A)
∏
i∈A

xi ,

where the set function aψ : 2
[n] → IR, called the Möbius transform of vψ, is

defined by

aψ(A) =
∑
B⊆A

(−1)|A|−|B| vψ(B).

The Lovász extension of a pseudo-Boolean function ψ : Bn → IR is the func-
tion Lψ : IR

n → IR whose restriction to each subdomain IRnσ (σ ∈ Sn) is the
unique affine function which agrees with ψ at the n+1 vertices of the n-simplex
[0, 1]n ∩ IRnσ (see [10, 11]). We then have Lψ|Bn = ψ.

It can be shown (see [7, §5.4.2]) that the Lovász extension of a pseudo-Boolean
function ψ : Bn → IR is the continuous function

Lψ(x) =
∑
A⊆[n]

aψ(A)
∧
i∈A

xi , x ∈ IRn. (1)

Its restriction to IRnσ is the affine function

Lψ(x) = ψ(0) +
∑
i∈[n]

xσ(i)
(
vψ(A

↑
σ(i))− vψ(A

↑
σ(i+ 1))

)
, x ∈ IRnσ, (2)

or equivalently,

Lψ(x) = ψ(0) +
∑
i∈[n]

xσ(i)
(
Lψ(1A↑

σ(i)
)− Lψ(1A↑

σ(i+1))
)
, x ∈ IRnσ, (3)

where A↑
σ(i) = {σ(i), . . . , σ(n)}, with the convention that A↑

σ(n+1) = ∅. Indeed,
for any k ∈ [n + 1], both sides of each of the equations (2) and (3) agree at
x = 1A↑

σ(k)
.

It is noteworthy that Lψ can also be represented by

Lψ(x) = ψ(0) +
∑
i∈[n]

xσ(i)
(
Lψ(−1A↓

σ(i−1))− Lψ(−1A↓
σ(i)

)
)
, x ∈ IRnσ,
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where A↓
σ(i) = {σ(1), . . . , σ(i)}, with the convention that A↓

σ(0) = ∅. Indeed,
for any k ∈ [n+ 1], by (3) we have

Lψ(−1A↓
σ(k−1)) = ψ(0) + Lψ(1A↑

σ(k)
)− Lψ(1A↑

σ(1)
).

A function f : IRn → IR is said to be a Lovász extension if there is a pseudo-
Boolean function ψ : Bn → IR such that f = Lψ.

An n-place Choquet integral is a nondecreasing Lovász extension Lψ : IR
n →

IR such that Lψ(0) = 0. It is easy to see that a Lovász extension L : IRn → IR is
an n-place Choquet integral if and only if its underlying pseudo-Boolean function
ψ = L|Bn is nondecreasing and vanishes at the origin (see [7, §5.4]).

1.2 Quasi-Lovász extensions on bounded chains

A generalization of the notion of Lovász extension of a pseudo-Boolean function
was introduced in [4] and called “quasi-Lovász extension”. In this paper we
extend this notion to the following concept.

Let C be a bounded chain under the usual operations ∧ and ∨, and with least
and greatest elements 0 and 1, respectively. We make no notational distinction
between 0, 1 ∈ C and 0, 1 ∈ IR; this notational abuse will not give raise to
ambiguities.

We say that a function f : Cn → IR is a quasi-Lovász extension if there is
a Lovász extension L : IRn → IR and an order-preserving mapping φ : C → IR
such that f can be factorized into the composition

f(x1, . . . , xn) = L(φ(x1), . . . , φ(xn)). (4)

For such a φ : C → IR we set φ(C) := {φ(x) : x ∈ C} that is contained in some
real interval I. To simplify our exposition we will assume that φ(0) = 0 and
that φ(C) ⊆ I = [0, a], for a = φ(1) (shift by φ(0) if necessary). Also, for every
f : Cn → IR, we denote by f0 the function f0(x) := f(x)− f(0).

Such an aggregation function is used in decision under uncertainty, where φ is
a utility function and f an overall preference functional. It is also used in multi-
criteria decision making where the criteria are commensurate (i.e., expressed in
a common scale). For a recent reference, see Bouyssou et al. [1].

2 Axiomatizations and representations of quasi-Lovász
extensions on bounded chains

We now provide an axiomatization of quasi-Lovász extensions on bounded chains
in terms of comonotonic modularity and an ordinal variant of homogeneity, as
well as provide a complete description of all possible factorizations (into a com-
position of a Lovász extension with an order-preserving unary mapping) when
such a factorization exists.
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2.1 Comonotonically modular and separable functions

Recall that a function f : Cn → IR is said to be modular (or a valuation) if

f(x) + f(x′) = f(x ∧ x′) + f(x ∨ x′) (5)

for every x,x′ ∈ Cn, and where x ∧ x′ (resp. x ∨ x′) denotes the n-tuple whose
ith component is xi∧x′i = min(xi, x

′
i) (resp. xi∨x′i = max(xi, x

′
i)). It was proved

(see Topkis [12, Thm 3.3]) that a function f : Cn → IR is modular if and only
if it is separable, that is, there exist n functions fi : C → IR, i ∈ [n], such that
f =

∑
i∈[n] fi.

3 In particular, any 1-place function f : C → IR is modular.

We say that a function f : Cn → IR is comonotonically modular if (5) holds
for every σ ∈ Sn and x,x′ ∈ Cnσ .

Fact 1 A function f is comonotonically modular if and only if so is the function
f0 = f − f(0).

Theorem 2. A function f : Cn → IR is comonotonically modular if and only if
one or, equivalently, both of the conditions hold:

(i) there exists a function g : Cn → IR such that, for every σ ∈ Sn and every
x ∈ Cnσ ,

f(x) = g(0) +
∑
i∈[n]

(
g(xσ(i) ∧ 1A↑

σ(i)
)− g(xσ(i) ∧ 1A↑

σ(i+1))
)
. (6)

In this case, we can choose g = f .
(ii) f is comonotonically separable, that is, for every σ ∈ Sn, there exist functions

fσi : C → IR, i ∈ [n], such that

f(x) =
n∑
i=1

fσi (xσ(i)) =
n∑
i=1

fσσ−1(i)(xi), x ∈ Cnσ .

In this case, we can choose fσn (xσ(n)) = f(xσ(n) ∧ 1{σ(n)}), and f
σ
i (xσ(i)) =

f(xσ(i) ∧ 1A↑
σ(i)

)− f(xσ(i) ∧ 1A↑
σ(i+1)), for i ∈ [n− 1].

Proof. It is easy to verify that (i) ⇒ (ii). Moreover, each fσσ−1(i) is clearly
modular and hence comonotonically modular. Since the class of comonotonically
modular functions is closed under addition, we have that (ii) is sufficient. Thus,
to complete the proof, it is enough to show that every comonotonically modular
function f satisfies (i).

Let σ ∈ Sn and x ∈ Cnσ . By comonotonic modularity, for every i ∈ [n− 1] we
have

f(xσ(i) ∧ 1A↑
σ(i)

) + f(x0
A↓

σ(i)
) = f(xσ(i) ∧ 1A↑

σ(i+1)) + f(x0
A↓

σ(i−1)
),

that is,

f(x0
A↓

σ(i−1)
) =

(
f(xσ(i) ∧ 1A↑

σ(i)
)− f(xσ(i) ∧ 1A↑

σ(i+1))
)
+ f(x0

A↓
σ(i)

). (7)

By using (7) for i = 1, . . . , n− 1, we obtain (6) with g = f . ⊓⊔
3 This result still holds in the more general framework where f is defined on a product
of chains.
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2.2 Axiomatizations of quasi-Lovász extensions

To axiomatize the class of quasi-Lovász extensions, we will also make use of
the following generalization of homogeneity. We say that f : Cn → IR is weakly
homogeneous if there exists an order-preserving function φ : C → IR satisfying
φ(0) = 0 such that f(x ∧ 1A) = φ(x)f(1A) for every x ∈ C and every A ⊆ [n].
Note that every weakly homogeneous function f satisfies f(0) = 0.

The following two results are variants of Lemma 2 and Proposition 3 in [4].
and their proofs follow in complete analogy.

Lemma 3. For every quasi-Lovász extension f : Cn → IR, f = L ◦ φ, we have

f0(x ∧ 1A) = φ(x)L0(1A), x ∈ C, A ⊆ [n]. (8)

Proposition 4. Let f : Cn → IR be a nonconstant quasi-Lovász extension, f =
L ◦ φ. Then the following conditions are equivalent.

(i) f0 is weakly homogeneous.
(ii) There exists A ⊆ [n] such that f0(1A) ̸= 0.
(iii) φ(1) ̸= 0.

In this case we have f0(x∧1A) = φ(x)
φ(1) f0(1A) for every x ∈ C and every A ⊆ [n].

We can now provide axiomatizations of the class of quasi-Lovász extensions
defined on bounded chains. The proof follows the same steps as in the proof of
Theorem 14 in [4].

Theorem 5. Let f : Cn → IR be a nonconstant function. Then, the following
assertions are equivalent.

(i) f is a quasi-Lovász extension and there exists A ⊆ [n] such that f0(1A) ̸= 0.
(ii) f is comonotonically modular and f0 is weakly homogeneous.
(iii) There is an order-preserving function φf : C → IR satisfying φf (0) = 0 and

φf (1) = 1 such that f = Lf |{0,1}n ◦ φf .

Proof. Let us prove that (i) ⇒ (ii). By definition, we have f = L ◦ φ, where
L : IRn → IR is a Lovász extension and φ : C → IR is an order-preserving function
satisfying φ(0) = 0. By Proposition 4, f0 is weakly homogeneous. Moreover, by
(3) and (8) we have that, for every σ ∈ Sn and every x ∈ Cnσ ,

f(x) = f(0) +
∑
i∈[n]

φ(xσ(i))
(
L0(1A↑

σ(i)
)− L0(1A↑

σ(i+1))
)

= f(0) +
∑
i∈[n]

(
f(xσ(i)1A↑

σ(i)
)− f(xσ(i)1A↑

σ(i+1))
)
.

Theorem 2 then shows that f is comonotonically modular.
Let us prove that (ii) ⇒ (iii). Since f is comonotonically modular, by The-

orem 2 it follows that, for every σ ∈ Sn and every x ∈ Cnσ ,

f(x) = f(0) +
∑
i∈[n]

(
f(xσ(i) ∧ 1A↑

σ(i)
)− f(xσ(i) ∧ 1A↑

σ(i+1))
)
,
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and, since f0 is weakly homogeneous,

f(x) = f(0) +
∑
i∈[n]

φf (xσ(i))
(
f(1A↑

σ(i)
)− f(1A↑

σ(i+1))
)

(9)

for some order-preserving function φf : C → IR satisfying φf (0) = 0. By (3), we
then obtain f = Lf |{0,1}n ◦ φf . Finally, by (9) we have that, for every A ⊆ [n],

f0(1A) = φf (1)f0(1A).

Since there exists A ⊆ [n] such that f0(1A) ̸= 0 (for otherwise, we would have
f0 ≡ 0 by (9)), we obtain φf (1) = 1.

The implication (iii) ⇒ (i) follows from Proposition 4. ⊓⊔

Remark 6. It is noteworthy that the class of quasi-polynomial functions on
bounded chains [2] (or, more generally, on bounded distributive lattices [3])
is likewise axiomatizable in terms of comonotonic modularity by considering a
lattice variant of weak homogeneity [6], namely: a function f : Cn → IR is said to
be weakly ∧-homogeneous if there exists an order-preserving function φ : C → IR
such that f(x ∧ 1A) = φ(x) ∧ f(1A) for every x ∈ C and every A ⊆ [n].

2.3 Factorizations of quasi-Lovász extensions

We now describe all possible factorizations of f into compositions of Lovász
extensions with order-preserving functions.

Theorem 7. Let f : Cn → IR be a quasi-Lovász extension, f = L ◦ φ. Then
there exists A∗ ⊆ [n] such that f0(1A∗) ̸= 0 if and only if there exists a > 0 such
that φ = aφf and L0 = 1

a (Lf |Bn )0.

Proof. (Sufficiency) We have f0 = L0 ◦ φ = (Lf |{0,1}n )0 ◦ φf , and by Theorem 5
we see that the conditions are sufficient.

(Necessity) By Proposition 4, we have

φ(x)

φ(1)
=
f0(x ∧ 1A∗)

f0(1A∗)
= φf (x).

We then have φ = aφf for some a > 0. Moreover, for every x ∈ {0, 1}n, we have

(Lf |{0,1}n )0(x) =
(
(Lf |{0,1}n )0 ◦ φf

)
(x) = f0(x) = (L0 ◦ φ)(x)

= a(L0 ◦ φf )(x) = aL0(x).

Since a Lovász extension is uniquely determined by its values on {0, 1}n ⊆ IR,
we have (Lf |{0,1}n )0 = aL0. ⊓⊔
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3 Concluding remarks and directions for further research

We have axiomatized the class of quasi-Lovász extensions, considered in the
wider setting of functions f : Cn → IR defined on a bounded chain C, thus
partially generalizing the results presented in the proceedings of IPMU2012 [5].
It remains now to consider the symmetric variant of the notion of quasi-Lovász
extension defined on bipolar scales C = C+ ∪C− where C+ is a bounded chain
and C− is its “negative” copy.
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