Well-posedness of the generalized Korteweg-de Vries-Burgers equation with nonlinear dispersion and nonlinear dissipation
Résumé
We prove the well-posedness of the generalized Korteweg-de Vries-Burgers equation with nonlinear dispersion and nonlinear dissipation$$u_t + f(u)_x - \delta g(u_{xx})_x - \varepsilon h(u_{x})_x = 0.$$Contrary to the linear case, the dispersion properties of the free evolution are useless and a vanishing parabolic regularization is then used.
Domaines
Mathématiques [math]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...