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Abstract. We prove the well-posedness of the generalized Korteweg-de Vries-Burgers equation with nonlinear
dispersion and nonlinear dissipation

ut + f(w)e — 09(uzz)e — eh(uz)z = 0.

Contrary to the linear case, the dispersion properties of the free evolution are useless and a vanishing parabolic

regularization is then used.
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1 I ntroduction

Fully nonlinear equations
ug + f(u)w - 59(“:&@)1 + EUgzze = 0,

proposed by Brenier and Levy [5], can be viewed as a generalization of the Korteweg-de Vries-
Burgers equation. When f(u) = u?/2,g(u) = u,e = 0, the equation turns to the classical KdV
equation [11], which describes the propagation of the one-dimensional gravity waves in shallow
water. Such nonlinear dispersion, g(u.;.)., significantly affects the dispersive behavior of the
solutions what differs completely from the linear case. In particular, Brenier and Levy obtain
dissipative behavior as soon as g is a nonlinear even concave function. The nonlinear dispersion
has a tendency to stabilize the solutions. It is then conjectured [5] that, for f strictly convex and
g concave functions, the solution converges, when § and €5~! go to zero, to the unique entropy
solution of the hyperbolic conservation law

U + f(u)x =0.

Contrary to the linear case, when the considered flux f(u) = u?/2 and g(uzs) = Uz, the solution
converges under the condition § = O(¢) [7, 14, 13, 16, 19, 20]. The study of nonlinear dispersion
is also of physical interest. Rosenau and Hyman highlight notable dispersive effects and obtain a



new class of compactly supported solitary waves [17, 18]. Although the literature proposed many
results related with the well-posedness [2, 3, 4, 9, 12]and the vanishing limit with nonlinear viscosity
and linear dispersion [6, 15], this paper is one of the first theoretical proof dealing with nonlinear
dispersion [1].

In this paper, we study the initial value problem for a more general class of dissipative-dispersive
hyperbolic conservation law defined by

ur + f(w)y — 0g(Uze)s — eh(uy), =0,

for x,t € R where h represents the dissipation satisfying

—+o0
/ ugh(ug) > 0.

— 00
In this case, we can not take the advantage of the dispersive properties of the free evolution to
obtain Strichartz type estimates [3, 12]. A fourth order regularization is applied to avoid the third
space derivative of the nonlinearity g. Nevertheless, to obtain the well-posedness, a condition which
links the dispersion to the dissipation is needed. For all ug sufficiently smooth initial data, the
condition can be written as follows,

+oo
/ g 5 (=€l (uo,0) + C16||uol|3?) dx < 0, (1.1)
— 00

for a dispersion |¢'(u)| < Cy|u|*. To keep a nonlinear dispersion, a superlinear condition h'(u) >
Co > 0 is imposed. Then, as soon as ||ug||y? < €/6, the condition (1.1) is satisfied. Notice that,
when g is linear, it allows to consider a large range of dissipation, the inequality (1.1) being reduced
to

+oo
—/ g 5.6h' (uo,2)dz < 0.

With such a dissipation, the result remains true for nonlinear dispersion of type ¢(tgzs.) and
(W) zze, including the K(m,n) equations [17]. To improve this constraint on the dissipation, we
consider in a second part nonlinear dispersion of type g(uy)... The inequality (1.1) becomes

—+oo
/ u%ysz (—eCo + C’1<5||u0||zg_a") dx <0.

and it allows us to consider dissipation in such a way cp|u|** < h/(u) < Cplu|*".

The paper is organised as follows. Section 2 deals with the well-posedness of the Cauchy problem
with nonlinear dispersion of type g(us,)z. The fourth order regularization is introduced, then the
regularization limit is obtained. In Section 3, we present the result concerning the nonlinearity
9(uz) . Finally, we state the well-posedness regarding nonlinearities g(uzz,) and g(u)zoz-

2  Nonlinearity of type g(u;.)s

2.1 Regularization
Let first consider the parabolic equation

wp + pu(—1)90%u = 0
with g > 0 and ¢ € N*. The semi-group is given by

Suta) = 5= [ e,

_g_oo

and satisfies the following regularization property.



Lemma 2.1 Let r,s > 0 and v € H*(R). Then for allt € R,

1 r/q 1/2
S T SSC’P 1 Ry EX
Sl ( +(zm) ) h

Proof. We have

+oo 2q
||Stu|\$+s < / (1 + 52)r+se*2ﬂf t‘ﬂ(§)|2d§
< sup ((1+€2)7e ) [Jull2.

£ER

2r —2u€29t __ £2q r/a r r/a 1 r/a
&e = ———— < | = —
e2n&2t/(r/q) ~— \q 2ut ’

To compute the well-posedness of the initial value problem, the following parabolic regulariza-
tion is used

However,

O

Ut + f(u)a - 5g(uwx)x - 5h(ux)x + MPUzpze = 0
u(z,0) = wuo(z).

—~
[N
~— ~—

Lemma 2.2 Assume that there exists s > 3 such that the functions f, g, h are locally Lipschitzian
in the Sobolev space H*(R), H*72(R) and H* 1(R) respectively, with f(0) = g(0) = h(0) = 0.
Then there exists T,, > 0, depending on u, such that

t

o(u)(t) := Spug — St (f(w)e — 0g(Ugs )z — eh(uy) ) (T)dT, (2.3)

0

is a contraction mapping on the closed ball
B(T,,) = {u € C([0,T.]; H*(R)); [[u(t) — uolls < 3[uolls}-

Moreover, there exists C' > 0 such that the solutions u and v, with ug and vy as initial datum
respectively, satisfy fort <1,

[lu(t) = v(@)]ls < Clluo — volls-

Proof. Let us denote Cy, Cy, Cp, > 0 the Lipschitz constants of the functions f, g, h respectively.
Let u,v € B(T},,). We have

P(u)(t) — p(v)(t) = _/ St ((f(w)e — f(v)2) = 6(9(Uzz)e — 9(Vaa)z) — E(R(Usz)z — P(v2)2))(T)dT.

0

On one hand, thanks to Lemma 2.1 with ¢ = 2,r = 1, we write

11— (F)e — F@IN, = 1Sir (P — FR) o1y
12\ 1/2
¢ (1+(2u(j_)) ) 1) = F@)allics,

1f (W) = f@)ells—1 = [If(u) = fF(0)l]s < Crllu = vl]s.

IN

and



On the other hand, it gets with ¢ =2,7 =3

1S+ (9(tra)e — 80 ) DI, = 1Si—r(9(tre)s — 900Dl usy s
e (1 T (M(j_)>/> 7 lotae)e = glenelelos
< o0, (1 ; (Mj))/>/ = oll..
and with ¢ = 2,7 = 2,
1St (hta)a = @D = Si—r (il ) — h0)) (D)l e—ay e
< aivgg—) Y ) = ) ecs
< G0 (1 + %(;_T))I/Q [T

We deduce

t 1/2\ 1/2
sup |[|o(u)(t) — ¢(v)(@)][s < C1Cf/0 <1+<2M(1)) ) dr sup ||u—vls

te[0,7] t—7 t€[0,T]
1/2

t 1 3/2
+6CC’/ 1—|—() dr sup |lu—v|s
oo 0 ( 2u(t —7) te[o,T]” I

t 1 1/2
+eC Ch/ (1+> dr sup |lu—vlls
2 0 2u(t — ) t€[0,7] I I

< Cw,T) sup |fu—olfs,
t€[0,T)

and we choose T' > 0, proportional to u, such that C (u, T) is small enough to ensure the contraction
mapping of ¢ in B(T),). B
In the same manner, it comes for u € B(T),)

sup |[|p(u)(t) —uolls = sup [[(¢(u)(t) — Stuo) + (Sruo — uo)lls
te[0,T) t€[0,T7]

N . . 1/2\ 1/2
2 14 [ ——
el + CsCiluols | ( (5= ) o
N . ) 32\ 1/2
1) s 1 —_— d
+ Cg03||U0||/O ( +<2,u(t—7)> ) T

1/2

- t 1
3 S 1 2u(t — )
+ eC,Csl|ugl] /0 ( +2,u(t—7')> o

< C(p, T)lluolls,

IN

we choose T > 0 such that C(u,T) < 3 to obtain ¢(u) € B(T},). -
It remains to prove the continuity with respect to the initial data. Let v and v in B(T},), with
ug and vp as initial datum respectively. From (2.3), it comes

u(t)—ov(t) = St<u0*7)0)*/0 St ((f(u)z—f(v)2) —6(g(Uaz)z —9(Vex)z) —€(h(Uz) e —h(ve)e)) (T)dT,



thus
sup ||u(t) — v(®)[[s < |luo = volls + C(p, T) sup [fu(t) —v(t)[ls
te[0,T] te[0,T]
And as soon as ¢ =1/(1 — C(u,T)) > 0, we have

sup |lu(t) = v()][s < efluo = wvol[s- =

te[0,T]
Remark 2.3 If f,g,h are polynomial functions, the Sobolev embedding, with s > 1/2,3/2,5/2
respectively, implies that f,h,g are locally Lipschitz in H®(R) respectively. Indeed, suppose f(u) =
u® L we have [10]

|1 (u) = F(0)]]s

af
(u—) Z TRV
=0 s

af af
Cs (IIU —0lls D a0 oo + [Ju = vlloo D IIU’va‘Z|s> ;
=0 =0

and the Sobolev embedding with s > 1/2 gives

IN

oy
£ (w) = f0)lls < Cs (Z IIUIIQIUII?‘l) [|u = ls.
i=0

2.2 Regularization limit

We wish to determine if the limit as p goes to 0 exists. We first show that the time 7}, can be
fixed independent of p.

Proposition 2.4 Assume that there exists Co,Cr,Cy, Cp > 0 such that
1FOw)| < Cpu|* 1 for0<i<2

lgW(w)| < Cylu|*™ 7 for0<j <7

B ()| < Culul™ 8 for 0 < k <6,

with
h'(u) > Cy > 0.
Define
o { min(ag, ag, ap) if ||ulls <1
: max(ay, ag,ap) if [|ulls > 1

with g > 1. Then there exists a constant K > 0 such that for ug € H*(R) satisfying

[luo[3* < K (2.4)

€
5
the time T of well-posedness in the preceding lemma can be chosen independent of . Moreover,
forallt € [-T,T), we have

llu(®)lla < 21 [[uo 4. (2.5)

Proof. Multiplying the equation (2.1) by 77 (—1)?9%'u and integrating over space give
1d 6, [t 1 ptee
e 2 i N2 _ _qyitl(a2i
FACOLETD S BNCREIED ) MRS RGO
4 +Oo . . . .
+ Z/ S(—1) (2 u)g(ttan)e + £(—1) (B2 (s )l

i=0 7~

= I41IL



Lemma 2.5 There exist C1,Cy > 0 such that

+oo
o< G (ull o i) + [ (et ) + Cudlul) de
Proof. On the one hand,
+o0 +oo
/ uh(ug)dx = Ugh(ug)dr <0
—+oo —+oo
/ Uzeh(uy)de = / u? b (ug)dx
+o0 +oo 1
/ Ugah(Uy)edr = / —u2 W (ug) + 3umh”’(uw)dx
+oo —+oo
9 1
/ Uz MUy )dr = / Uixh/(ux) ) mxh”(ux) - iuimuith(ux) + 5“23:}1(5) (ug)dz
+o0 +oo
/ ugzh(ug)dz = / —uZ W (ug) 4 8ud uppeh! (ug) + 8u2 u2 B (uy) — 5uld b (us)
) 1
And on the other hand,
+o0 +oo
/ ug(Ugy )edr = 7/ Uy g(Ugy )dx
+;o 7+oo
+oo +oo 1 3
/ u43:g(ux3:)3:dx = - iuxacxg"(uxm)dx
e _ e 5 2 " _} 5 (4)
u6xg(uxa:)wdx = 2U4gguxxarg (u:cx) 4’11»““9 (uwx)dx
e _ e z 2 " 3 " 2,3 (4)
1
Jréu;xxg((i)(umz)dz.

Let us remind the Gagliardo-Nirenberg inequality [8]. Let 1 < p,q < 00,0 < j < m, then there
exists C = C(p,q,j, m) > 0 such that

1030]1z- < CllOvllEa vllze ",

where

S|

1 1-— j
:j+a(—m>+ aandi§a<1.
p q m

In particular, we have with p=2,g=00,r =3, =2,m =3,a=2/3

1020l1s < CllO2v][72][v]]. (2.6)



We deduce

—+oo +oo —+oo
[e3
/ ugmuxxmg”(uxm)dx < ||Uzmmg”(uzx)”00/ “gmdeC”qulg/ ugmdm
— 00 — 00 — 00
+oo
/ Uixuzmgm(“rz)dz < ||Uzmg///(um¢)‘|00||azum:||%3SC(Humz”oouumnggil”|8§UMH%2
—00
—+oo
< ol [ e
— 00

Other terms can be bounded by the Sobolev norm H*(R) thanks to the Sobolev embedding. [

Lemma 2.6 Let s > 3/2. There exists C3 > 0, depending only on s, such that
<u, f(w)e >o< Calfull5, (27)

where the scalar product is defined as

+oo
<y = / (1+ €2)°a(€)3(E)de.

Proof. We define N
1 >
Fwi= g [ ey Rae

:% N

We remind that Kato and Ponce [10] show that there exists Cs > 0, depending only on s, such
that

7%, ul(0)]z2 < Cs (lullool 757 (0)]z2 + [[7* ()] 220l (2.8)
where [J*%, u](v) = J*(uv) — uJ*(v).
We deduce, since u is real valued,

+oo -
[ et - o [

— 0o — 00

+oo

1

T o

J5(u) eI (1 4 £2)/2 ( /_ +: eiffu(f)cﬁ) ,

and the change of variables ¢ — —¢ implies J%(u) = J*(u). Thus

“+ o0 400

Js(u)JS(f(u)m)dx:/ J(w) I (f(u)y) dx.

— 00

<u, f(u)z >S=/

However, f(u), = u,f'(u) and J*(f(u),) = J* (uef'(w)) = f'(u)J* (us) + [J*, '(u))(ur,), thus

+oo —+oo

< u, f(u), >s:/ f’(u)JS(ux)Js(u)d:v+/ [J°, ' (w)] (ug)J® (u) do =: T + 1L

—0o0 — 00

On one hand, we obtain from the Sobolev embedding and using J(ug) = J(u),

[ (555), =

1 2
§||“mf"(u)|\oo||<]su||%2 < Cilfu) |77

i / () 7 () da

— 00

IN

On the other hand, the Cauchy-Schwarz inequality provides

~ +oo
| < ’/_ 7%, £ ()] (ua) T* (u) dac| < [I[LT°, £ (w)] (ua) ]2 |1 (w)]] 2,




and the Kato-Ponce inequality (2.8) and the Sobolev embedding yield

1] < Co (117 @)loe 17 @)l 2 + 1°(F @)zl llo) 1) 2 < Cullul 2772

We deduce from the preceding lemmata that

6
d i +2 ag+2 p
aIIU(t)HiﬂLuleaquQm < Cylfully™ + Colllully™™ + [lullg" ™)

=2

“+oo
—|—/ u?, (—eh (uz) + C10|ul|y?) dz

—+o0
< Ofulls*? + / W2, (—eh () + Coollul[S*) do,  (2.9)

— 00

where ) _
min(ag, ag, ap) if ||ulla <1

0 = aman(Ca ) s = { ol >

We notice that, since h'(u) > Cy > 0,

+oo
/ W2 5, (—eh! (uo.0) + 18] uo[S7) d

—o0
+oo Cy6
< 2 el (uog) | =14+ == |uolls? ) da.
< [ ettt (<14 Gl ) ds
From (2.4), it gets for K < Cy/CY,
Ci6,, e OUK
~19 9 < <1
COE||UO||4 — CO = 5

thus
—+o00
/ W5 (—eh (uo.s) + Crd]uo |57 de < 0.

—0Q0

Then we can choose K >0 and T > 0 such for all t <T
+oo
/ uZ, (—eh/(uy) + C1d|lul|3?) dz < 0.
Indeed, from (2.9), we deduce that ||u(t)||4 < m(t)'/? where m is solution of
m/(t) = 20m(t)@+?)/?
m(0) = [uoll3.
The solution of this ordinary differential equation is explicitly given by

pers ol
MO = T gl

and
1

)]s < m(t)/? < 2V ift <T = ——.
[lu®lla < m() = < 27 uolla if ¢ < T = 5770

Then, it is enough to choose K < Cy/(2%/“C}) to obtain

a, _ C16 w, 2%/ K
i< G2l < = < 1.
C()E CO O

Gy
C()E Y



Theorem 2.7 Let ug € H*(R) with

g
loll3” < K.

There exists T > 0, inversely proportional to ||uo||la, such that there exists a unique solution
u € C([-T,T)], HX(R)) of the initial value problem
ur + f(w)g —0g(Uupg)e —eh(ug)y = 0
u(z,0) = wug(z).
Proof. We show that the solution (u*(t)), is a Cauchy sequence for ¢ € [0,T]. Let p,v > 0, and
ut, v¥ be the respective solution of (2.1)-(2.2). We have, for ¢ € [0, 7],

O |ut — 11"||2 = 2<u—v,u— v >
-2 <u— v, f(u)z - f(’U)w > +26 <u-— vvg(ua:a:)w - g(va::r):r >
+ 2 <u—vh(ug)e — h(vy)e > — < U— U, Wggre — VVpgza > -

We notice that

<U =V, WUgzge — VWegge > = M < U=V, Ugzze — Vzzzas > +(/J/ - 1/) <U—V,Vpzzz >
< U=V, Ugpze — Vgzzx > = < (U - U):v:bv (U — U)za: >> 0,
and
+oo “+o00
<u—v, f(u)g— flv)y >= /—(u—v)m(f(u) — f(v)dz :/ (u—v)g(u—0) (/ JHEN d)\) dx

() ([ e O [ )

where z) := (1 — A)u + \v. In the same way, we find

e<u—v,h(ug)y —h(vg)e >+0 <u—v,9(Ugz)e — §(Vaz)e >

1 1)
= /((u —0)g)? (/ —eh'(za ) + 22,\7m$g”(z,\7m)d/\) dx <0,
0

because A/ (zy ) > Cp > 0 implies

1 1
§ 1)
(/ 75hl(z)\,z) + Z)\,xng//(zk,mx)dA) S (/ Eh/(z)\,m)(*]- + ||Z)\,:cmmg//(2)\,zm)|ood)\>
0 2 2006

0

and, from (2.5), as soon as K < CO/(2a9+a9/aC1),

) Cl 2ag+a9/a01K
T zx)|loo = @ < — < 1.
sl arad el < GimllaallE” < G2l + oll) < 2

Finally, it comes

+o0 N2 1
Q| — |2 = _2/ w (/ z,\’xf”(z,\)dA> du
0

— 00

+oo 1
—2/ ((U — U)ﬂ:)2 (/ _Eh/(z)\,w) + gZA,azmgﬁ(ZA,ww)d)‘) dx
0

—00

—p /_:o((u —0)ze)?dz + (p —v) /_:C(u — V) o Vo dr
/+OO(U — V)22 Uped| .

' / +:<u oy ( / 1 zA,mf'%zA)dA) da B

IN

+lp—v




Denoting M = sup,cp rm(t), we have from the preceding proposition |[u#(t)|ls < M'/? and
[[v” (t)[|la < M2, We deduce that there exists a constant Cy; > 0, depending only on M, such
that

arllut —v”|* < Cullu® —v”||* + Curlpe — v

The Gronwall lemma implies that (u/(t)),, is a Cauchy sequence in the complete space L*(R) and
then it converges to a limit u(t). Moreover, since u*(t) is continuous with respect to time and
uniformly bounded by M'/2, the sequence (u*(t)),, is also weakly convergent in H*(R) to the limit
u(t). O

Remark 2.8 We can easily improve the assumptions by setting only

[fB ) = fP0)] < Cplul*
197 () = gP(0)] < Cylu|*"
B () =@ )] < Cplul*~>.
The inequality (2.9) becoming
d 6 ) +00
Zlle@13 + #2 |05ull72 < C(L+[Jull§™?) + [m uf, (—eh'(ug) + Ci|ul[3?) de,

the rest of the proof is dealt with similarly.

Remark 2.9 The time T, proportional to 1/||ug||a, is also the time well-posedness of the purely
hyperbolic initial value problem.

Remark 2.10 Concerning the fully nonlinear dispersive equation (i.e. ¢ = p = 0), one can not
control the sign of zpzeg” (224). Nevertheless, the reqularized problem

remains well-posed on a time-scale inversely proportional to ||ugl||s if the initial datum satisfies
|uolls < Kp/6.

Remark 2.11 Concerning the case of linear dispersion, same ideas provide the well-posedness of
the initial value problem in H?(R) for a large range of dissipation.

3 Nonlinearity of type g(u;).:

To improve the assumptions concerning the dissipation, we now focus on nonlinear dispersion of
type g(ug) . It allows us to regard more generalized dissipation.
As for the preceding section, we consider the regularized Cauchy problem
uy + f(u)z = 09(Ua)oe — EN(Ua)e + MUazee = O (3.1)
u(z,0) = wo(x).

Proposition 3.1 Assume that
\f(i)(u)\ Cf|u|af+1ﬂ' for0<i<?2
199 (w)] Cylul*77 for0<j <8
B® )] < Chulul*+1F for0< k<7,

IA A

10



and
R (u) > eplu|™.

Suppose that ag > ap, + 1. Then there exists K > 0 such that for ug € H*(R) with

— 9
[lwolli” ™" < K5

there exists T > 0, depending only on ||ug||a and independent on i, such that there exists a unique
solution u € C([-T,T], H*(R)) of the initial value problem (3.1)-(3.2).

Moreover, there exists C' > 0 such that the solutions u and v, with ug and vy as initial datum
respectively, satisfy for |t| <T,

[lu(t) = v(t)[ls < Clluo — volla-
Proof. 1In the exact same way that we prove Lemma (2.2), we first show there exists a unique
solution u € C([-T},,T,], H*(R)) of the initial value problem (3.1)-(3.2) where 7}, depends on u

using Duhamel’s formula. It remains to prove that this time can be chosen independently on p.
The equation (3.1) is multiplied by Zﬁzo(fl)iagiu and the result is integrated over space to supply

4 400
o lhu(t) ||4+MZ / = 3 [ ot s

+ Z/ V(02 u)g(un)ande + £(—1) (0% u)h(uy)oda
= I+4+1IL

Lemma 3.2 There exist C1,Coy > 0 such that

+oo
s [ e (<14 SOl ) ot Calll$ )

— 00

Proof. We note, on the one hand,

+o0 +oo
/ uh(ug)dx = —/ uph(uy)dx <0

+oo +oo
/ Ugph(ug)de = / u? b (ug)dx
— 00 — 00
+oo “+o0
/ Ugah(Uy)edz = / —uZ K (ug) + mh’”(ur)dx
. . 3
e e PARN 3 " 9 2 " 1 (5)
—+oo +oo
/ ugzh(ug)pdz = / —uZ B (ug) + 8ud tuppe k! (ug) + 8ud u2 1" (uy) — Sulb, b (us)

TTrxr "TrIT TTX "TT

1
— 2003, uZ, ™ (uy) — 10u2, ut hO) (u )—l—?uimhm(ufz)cl:lc7

11



and on the other hand

+o0 +oo
/ ug(Uy)pedr = / Ugag(ug)de = [Gua] T35 =0

o0 +
/ Uz G (Ug ) gwdT = / iuizg”(um)dm
7+oo 7+oo 5 2 A
[ wngteade = [ R g ) + utg ()
oo _ oot 2 " =3 " _ (4) 1 7 _(6)
UpzJ(Ug)zzdr = 2u4xuxxg (uz) = Tugyp e g™ (Us) 7ux;cx xacg (uz) + 6ux;cg (ug)dx
+o0 +oo
/ gz (Ug )zedr = / §u§$umg"(uw) + UspUirUzzeg” (W) + 40UT U prtineg” (Ug) + 15uixu§$g(4)(ux)dx
145 15 1

Finally, according to the Sobolev embedding,

+o00

90 a o

U2 [ el (i, — S utang (1) + Gusstastarag” (wa)do -+ Call {7 + [ul[§+2)
— o0

We have, since ag > ap, + 1,

+oo
/ w2 peg’ (ug)de

— 00

" +o0 too
uw;)H [ Wwdds <Cllull [ W w)idda

h’(ux — 0 —o00

IN

and from the Young inequality 2ab < a? + b?

+o0 +oo +oo
/ U5wu4xuxxxg”(ux)dm < / u§x|ua:xxg”(ua:)|dm+/ Uix|uxa:xgu(ux)|d$

— 00 — 00 — 00

uzwwg,/ (uz)

+oo +oo
[ et [ e )i

- h’(uz) oo —o0
+oo 5
< Ol [ W ) e+l
O
Lemma 2.6 provides the following inequality.
Lemma 3.3 There exists a constant Cy > 0 such that
1] < Culully" .
We deduce from Lemmata 3.2 and 3.3
i a+2 oo / C(1(5 ag—ap
IIU( ||4+MZ||8 ul[72 < Olull§ eh’ (ug)u3, —14+ —llulls dx.
=2 -
Then we can choose T = 1/(2aC||ug||§) > 0 such that for all t <T
+oo o)
[ e, (<1 i) <o
as soon as
015 ag—ap 016 ( —an)/ ag—apn 012(th—ah)/OLK
—_ 1T < 2 glag—an)/a R e g
2 ()l : ol =< .
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Theorem 3.4 Let ug € H*(R) with
<
5

There exists T > 0, inversely proportional to ||uo||la, such that there exists a unique solution
u € C([-T,T), HX(R)) of the initial value problem

luoll3* ™" < K

up + f(u)y — 09(uyg)we —eh(ug), = 0
u(z,0) = wug(x).

Proof. Once again, we show that the solution (u*(t)), is a Cauchy sequence for ¢ € [0,7T]. Let
w,v > 0, and u*, v” be the respective solution of (2.1)-(2.2). We have, for ¢t € [0, T],

Ol —v”|)? = 2<u—wv,u— v >
= —2<u-— v, f(u):t - f(v)z > +25 <u-— U7g(ur)rx - g(vr)xx >
+ 28 <wu—w, h(uw)L - h(vz)w > = < U=V, WUggzx — VVggaz > -

We see that
< U=V, Wggzz — VVggzz > = M <U—V,Uggze — Uzzzz > +(,U_V) <U—V,VUgggx >
< U=V, Uggzy — Vgzax > = < (U_’U)mm,(u—’lj)xaj >> 0,

and, setting z) = (1 — AM)u—+ v
Foo oo (u —v)? !
<u—uv,f(u)e— f(0)y > = 7/7 (u—0)(f(u) — f(v))dz :[ % </0 z>\7$f”(z>\)d)\> dx.

In the same way, we find

e<u—v,h(ug)y —h(vz)e > 40 <u—0v,9(tz)ze — 9(Vz) gz >
1
=~ w0127 ([ W era) + Jonaes Grlar) <0,
0

because

]

2e

CVlé ag—o
— 9T
< Ll < .

Z)\7wwgll (Z)\,a:)

2(0‘g_ah)+(ag_ah)/aCIK
<1
b (2x,2)

’ oo

Finally, we obtain

“+o0 o 2 1
o — 1P = 2 [ Ui i
0

“+o0 1
_2/ (u—v)g)? (/ eh’(zx) + ngymg”(z,\yx)d)\) dx
—o0 0

= " ()t (- ) / T 0 ) v

o0 — 00
+oo
/ (U — V) gz Vg de

< '/_:O(U —v)® (/01 ZA,zf”(%\)‘”\) dx .

We have |[u”(t)|[s < M'/? and |[v¥(t)||4 < M'/2. Then we deduce that there exists a constant
Cyr > 0, depending only on M, such that

+[p—v|

arllut —v”|* < Cullu® = v”||* + Curlpe = v
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The Gronwall lemma implies that (u/(t)),, is a Cauchy sequence in the complete space L*(R) and
then it converges to a limit u(¢). Moreover, since u*(t) is continuous with respect to time and
uniformly bounded by M'/2, the sequence (u*(t)),, is also weakly convergent in H*(R) to the limit
u(t). O

Remark 3.5 When h'(u) > Cy > 0, the H3—regularity is enough to obtain the well-posedness
with the nonlinear dispersion g(ug)zz-

4 Nonlinearities of type ¢(u;.,) and g(u)zz

In a similar manner, we can study nonlinear dispersions ¢(uzz.) and g(¢)zz. The proofs are
sketched.
Theorem 4.1 Assume that there exists Co, Cy,Cy, Cy > 0 such that
fOw)] < Cplul ¥ for 0 <i <2
9P ()] < Cylul*™ I for0<j <6
WB ()| < Cplu|** T for 0 < k <6,

N

with
h’(u) >Cy >0,
and ag > 1. Then there exists K > 0 such that for ug € H'(R) satisfying

3
lollg? < K5,

there exists T > 0, inversely proportional to ||ugl|7, such that there exists a unique solution u €
C([-T,T),H"(R)) of the initial value problem

us + f(u)z - (sg(uzmm) - 5h(ur)r = 0

Moreover, for allt € [—-T,T], we have

llu@®)]l7 < Clluoll7-
Proof. Let n € N*. Multiplying the equation
by >°i(—1)!0?'u and integrating over space give

n+2

n 400
Sl <3 [ @ - > / (1)1 (02 ) f ().

The Leibniz rule points to

+oo “+oo “+o0
/ (1) (02"0) g (ttgp )z = / ()0 g (1tgg)dr = — / (O )02 (g () )
400 n 2 . ) )
= / (0" w) < " )<8£‘“U4z><azg'<um>>dx
0o = J
400 n 2 _2
- / 6n+1 ( n] ) (82+27ju)(agg/(uzzz))dx'

oo 7=0
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We focus on the high order space derivatives. The other derivatives can be included in the Sobolev
norm H™(R) using the Gagliardo-Nirenberg inequality and the Sobolev embedding. Then, we
obtain from j =0,1,2

+oo +o0 n+1,\2
/ (0" w) (072 u) g (Ugee )dr = / —Mu4xg"(umxm)dx

—c0 —00 2

+o0 +oo
/ (O ) (07 ) D (¢ (o)) dw = / ()t (e ) de

— 00 — 00

400 +oo nu2
| @@ e - | R 38 (4 ()

—co —o0 2

400 on 2 ‘
— / 7( zU) (u6mg/,(uzmm) + 3U5fcu4mgm(ur$1) + uimg(4) (Urrr)) dr.

We notice that, if n > 7,

A

+00 too
= |[t42g" (t520)loc / (@ ude < Ofjul|” / (@ ) da

— 00 — 00

“+ o0
‘/ (0" ) 2 U4 (U )z

e (8aTcLu)2 1 " 3 (4)

IN

Clullye+.

Same equalities hold for j = n — 1,n — 2,n — 3 and for h. Finally, the inequality (2.9) is now

written as
—+o0

d « Qg
GO < Cllullz ™+ [, (<2 () + Collal?) d,

— 00

and the rest of the proof is dealt with similarly as the previous theorems. O

Theorem 4.2 Assume that there exists Cy, Cy,Cy, Cy > 0 such that

D) < Cplul* 7 for0<i <2
99| < Colu ™ foro<j<3
WE (w)| < Cplu|®+7 for 0 < k <6,

with
h'(u) > Coy > 0,

and g > 1. Then there exists K > 0 such that for ug € H*(R) with
€

Y<K
luoll§” < K

there exists T > 0, inversely proportional to ||ug||a, such that there exists a unique solution u €
C([-T,T), HX(R)) of the initial value problem

ug + f(u)e — 69(t)zaa — e(Uuz)e = 0

Moreover, for allt € [—-T,T], we have

[lu(®)]la < Clluolla-
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Proof. Let n € N*. The equation
U + f(u):c - 6.9(“):6363’,‘ - gh(ux)ar + pUgzer =0

is multiplied by Y7 ,(—1)‘02u and by integrating over space, we obtain

n+2

n 400
Sl + 3 [ e = 3 [ e s

" Z / (D2 u)g (W) + (—1)* (D2 )t ol

The Leibniz rule implies

+o0 +oo
[ (1) (O W) = — / (O 1000 (9(t) )

+oo = n—1 , ,
= - (05 w) ) 07 (U ) (929 (u))
/_oo ; < j ) g
+305 7 (U g ) (829" () + 07177 (ul) (829" (u)).

As before, to control the norm of the derivatives with the Sobolev norm H"(R), we need n > 4,
the greatest orders being such that

—+oo —+oo —+oo
] / (O ) (u)de| < |Juzeg” (0)]oo / (@ ude < Ofjul|s / (@) da
+oo
‘/ (@0 useg (wde| < Cllullo .
Finally, it comes
d o, [T
LI < Clullg / 2, (—eh (ug) + CallullS?) da. O

Remark 4.3 Regarding the nonlinear dispersions g(ugze) and g(u)zzs, it could be possible to
reduce the regularity of the initial datum by writing more precisely the derivatives appearing the
integrations by parts. For example, to apply the Leibniz rule with the nonlinear dispersion g(tuyq)q
gives n = 6 whereas n = 4 is enough.
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