Comparison of solutions of Boussinesq systems - Archive ouverte HAL Access content directly
Journal Articles Advances in Pure and Applied Mathematics Year : 2014

Comparison of solutions of Boussinesq systems

Abstract

We compare the solution of the generalized Boussinesq systems, for various values of a,b,c,d, \begin{eqnarray}\nonumber \eta_t +u_x +\varepsilon ((\eta u)_x +au_{xxx}-b\eta_{xxt}) &=& 0 \\\nonumber u_t +\eta_x +\varepsilon (uu_x +c\eta_{xxx} -du_{xxt}) &=&0.\end{eqnarray}These systems describe the two-way propagation of small amplitude long waves in shallow water. We prove, using an energy method introduced by Bona, Pritchard and Scott, that respective solutions of Boussinesq systems, starting from the same initial datum, remain close on a time interval inversely proportional to the wave amplitude.
Fichier principal
Vignette du fichier
2014_03_CompBouss_preprint.pdf (518.49 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01090296 , version 1 (03-12-2014)

Identifiers

Cite

Youcef Mammeri, Yumeng Zhang. Comparison of solutions of Boussinesq systems. Advances in Pure and Applied Mathematics, 2014, 5 (2), pp.101-115. ⟨10.1515/apam-2014-0013⟩. ⟨hal-01090296⟩
137 View
138 Download

Altmetric

Share

Gmail Facebook X LinkedIn More