Rapid, robust, distributed evaluation and control of train scheduling on a single line track
Résumé
The technology for controlling the distance between two trains is shifting from traditional fixed red, yellow and green signals on the infrastructure track circuits towards more and more dynamic systems, which are based on moving blocks, where the distance is computed according to real-time positioning, and the control of the distance is computed on-line. This is the case, for example, in the European Rail Traffic Management System (ERTMS), which proposes three different levels, from 1 to 3. This paper addresses the time-honoured problem of scheduling trains on a single track, in the light of recent results in robust team decision theory. The control model can be used in two modes: as a decision support tool for train dispatchers to evaluate the distance between trains in the current schedule, and as a planning tool to evaluate the effects of time table changes. The main contribution of the paper is the application of a recent result in robust team decision theory to control noncritical train distances in moving blocks, such as in ERTMS Level 3. The case study is related to real data from an ERTMS simulation and controller software tool.