Gelfand-Shilov smoothing effect for the Cauchy problem of the non-cutoff spatially homogeneous Boltzmann equation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

Gelfand-Shilov smoothing effect for the Cauchy problem of the non-cutoff spatially homogeneous Boltzmann equation

Résumé

In this work, we prove the Gelfand-Shilov smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzamnn equation with Maxwellian molecules. The smoothing properties is same as the Cauchy problem defined by the evolu-tion equation associated to a fractional harmonic oscillator. We also construct the solution of the Boltzmann equation by solving an infinite systems of ordinary differential equations. The key tools is the spectral decomposition of linear and non-linear Boltzmann operators,
Fichier principal
Vignette du fichier
GLX1-final-B.pdf (346.32 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01088989 , version 1 (29-11-2014)
hal-01088989 , version 2 (03-12-2014)
hal-01088989 , version 3 (17-03-2015)
hal-01088989 , version 4 (17-11-2015)

Identifiants

Citer

Leo Glangetas, Hao-Guang Li, Chao-Jiang Xu. Gelfand-Shilov smoothing effect for the Cauchy problem of the non-cutoff spatially homogeneous Boltzmann equation. 2014. ⟨hal-01088989v1⟩
256 Consultations
174 Téléchargements

Altmetric

Partager

More