Heterogeneous Bayes Filters with Sparse Bayesian Models: Application to state estimation in robotics - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Heterogeneous Bayes Filters with Sparse Bayesian Models: Application to state estimation in robotics

Alexandre Ravet
  • Fonction : Auteur
  • PersonId : 950487
Simon Lacroix

Résumé

This study introduces a new augmented Bayes filter model for time-varying, context-dependent emission noise. The envisaged ap-plication, robust state estimation for a robot, motivates the use of the Relevance Vector Machine to model the emission noise, as it provides sparsity and fast inference capabilities. Besides the introduction of this new model, this work also aims at comparing the final filter performance when discriminative training is used instead of the prevalent generative training. The theoretical foundations for training and running inference over the model are proposed.
Fichier principal
Vignette du fichier
RAVET-ECML-2014.pdf (130.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01086243 , version 1 (23-11-2014)

Licence

Copyright (Tous droits réservés)

Identifiants

  • HAL Id : hal-01086243 , version 1

Citer

Alexandre Ravet, Simon Lacroix. Heterogeneous Bayes Filters with Sparse Bayesian Models: Application to state estimation in robotics. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery (ECML/PKDD), Sep 2014, Nancy, France. pp.10. ⟨hal-01086243⟩
229 Consultations
90 Téléchargements

Partager

More