
HAL Id: hal-01086243
https://hal.science/hal-01086243v1

Submitted on 23 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Heterogeneous Bayes Filters with Sparse Bayesian
Models: Application to state estimation in robotics

Alexandre Ravet, Simon Lacroix

To cite this version:
Alexandre Ravet, Simon Lacroix. Heterogeneous Bayes Filters with Sparse Bayesian Models: Appli-
cation to state estimation in robotics. European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery (ECML/PKDD), Sep 2014, Nancy, France. pp.10. �hal-01086243�

https://hal.science/hal-01086243v1
https://hal.archives-ouvertes.fr


Heterogeneous Bayes Filters with Sparse

Bayesian Models:

Application to state estimation in robotics

Alexandre Ravet1,2 and Simon Lacroix1,3

1 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
2 Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France

3 Univ de Toulouse, LAAS, F-31400 Toulouse, France

Abstract. This study introduces a new augmented Bayes filter model
for time-varying, context-dependent emission noise. The envisaged ap-
plication, robust state estimation for a robot, motivates the use of the
Relevance Vector Machine to model the emission noise, as it provides
sparsity and fast inference capabilities. Besides the introduction of this
new model, this work also aims at comparing the final filter performance
when discriminative training is used instead of the prevalent generative
training. The theoretical foundations for training and running inference
over the model are proposed.

1 Introduction

Bayes filters (BF) have been widely applied to many areas. They are notably a
workhorse of robotics, where recursive filtering [6], a fast and simple inference
procedure, has provided the most common and reliable method for real-time
state estimation over the past decades. BF used for state estimation usually rely
on some optimistic assumptions for two main reasons: the real physical system
is actually too complex to be perfectly described through a tractable model,
and physical exactitude is neglected for the sake of computational efficiency.
As a consequence, filter models designed for state estimation usually rely on a
minimum system state representing the robot variables required for achieving
a specific task. Any unmodeled aspect of the system, among which the effects
of the current environment over the filter performance, are then encompassed
within additional noise terms.

In practice, when used for robot state estimation, Bayes filters require a
substantial tuning phase to provide acceptable performances. This is because
capturing all unspecified aspects of the system through the sole introduction of
noise often results in a trade-off between output optimality (accuracy of the state
estimate) and robustness (to the different unmodeled aspects). An illustration of
this problem, and the core motivation of this work, is the case of an autonomous
robot navigating through different environments, in which one has to deal with
a whole range of alterations in sensor readings, going from average (optimal)
observation noise to complete failure (unreliable data). This is especially true



when sensor performances are strongly affected by the different environment
characteristics, such as luminosity, or texture and materials of the surroundings
objects, ground and obstacles.

The classical state-space model is defined by:

xt = f(xt−1) + γ

yt = g(xt) + ν
(1)

where xt is the latent state at time t with the associated observation yt, f and
g the transition and emission functions respectively, γ ∼ N (0, Σγ) the system
noise and ν ∼ N (0, Σν) the observation noise. f and g can either be linear func-
tions (linear dynamical system) or nonlinear (nonlinear dynamical system). Most
often, no fixed noise values Σν that would yield an optimal output for a large
variety of operating conditions (or environments) can be determined. Other un-
modeled effects producing the strongest measurement alterations are often com-
pensated with a rejection scheme, usually relying on a model self-consistency
check. In other words, designing a Bayes filter emission model consists in find-
ing the best distribution modeling the emission process for the nominal cases,
and rejecting all the data that does not fit this distribution [13]. One strong
consequence of this approach is that the system might converge to erroneous
but model-consistent state values [14, 12]. When such divergences are observed,
additional parameter tuning is required to improve global robustness, then detri-
mentally affecting the state estimation performance.

This classical state-space model, whose graphical representation is shown in
Fig.1, is known as (time) homogeneous. It can be enhanced by making the model
parameters vary in time: the trade-off usually required when tuning the param-
eters is then no longer needed, and the resulting model can handle the whole
spectrum of alterations over measurements. As the research context motivating
this study concerns robust and adaptive perception for autonomous robots, this
work focuses on the emission distribution – even though the proposed approach
can be straightforwardly applied to the prediction distribution of model (1).

This paper aims at developing a model able to compensate for the assump-
tions made by describing a system through the simplified emission distribution
with simple Gaussian noiseΣν – while maintaining high computational efficiency.
It results in an enhanced Kalman filter capable of dealing with both moderate
alterations and outliers, without requiring the implementation of rejection rules.
This is done by training an additional model for the emission noise, which relies
on contextual information input. One particularly appealing consequence of this
approach lies in the introduction of a second order knowledge over measurements
reliability, where basic rejection schemes rely on some knowledge about the data
properties. The proposed approach is consequently less likely to diverge.

Discriminative training being known to help in compensating some of the
mis-modeled aspects of a system [1], we also aim at analyzing the impact of a
discriminative learning method versus a generative one over the performance of
the resulting filter.



Fig. 1. Graphical model of a Bayes filter with homogeneous emission distributions.

The next section depicts the model basic principle. Sections 3 and 4 respec-
tively describe generative and discriminative training of the model. Inference
methods are then provided in section 5, and a discussion concludes the paper.

2 Heterogeneous BF with sparse Bayesian models

2.1 Background

Unless the state of simple models such as (1) encompasses all the exogenous
phenomena likely to alter the system behavior, BF are by nature unable to
model time varying emission and prediction processes. Recently, extensions have
been proposed in order to compensate this unability. Nonparametric models
such as Gaussian Processes (GP) have been integrated for modeling transition
and emission distributions [3], and extended to fully state-dependent models
in [9], through the introduction of a heteroscedastic observation noise. If non-
parametric models improve the filter robustness compared to parametric func-
tions, they are usually designed as state-dependent models, and as such are
unable to handle contextual influence over the measurement process. For the
heteroscedastic observation model proposed in [9], the presence of outliers in the
training set is then critical: based on the sole state information, the system is
unable to discern the contribution of the noise free model (g(xt) in (1)) from
the noise model (which is then written ν(xt)) within measurements. An other
disadvantage of these approaches is that one has to turn to more complex sparse
GP techniques when using a large training set if the system is intended to be
used in real time.

From a different perspective, optimizing the parameters of a BF has always
been mostly considered as a tuning task, achieved with the intuitive goal of pro-
viding the most accurate state estimation. This allows to take into consideration
some mis-modeled aspects of the system, even if they are never explicitly de-
scribed, neither understood. Surprisingly, methods for learning the parameters
of a BF appeared quite recently in the literature, and mostly rely on maximum
likelihood. Since BF are generative models, this implies that the parameters are
not determined with respect to the system ultimate performance, but so as to
get the best model for the underlying prediction and emission processes. Con-
versely, discriminative training is similar to manual tuning, in the sense that



the parameters are optimized with respect to filter performance. But this latter
training approach remains uncommon, although it proved to outperform man-
ual tuning and maximum likelihood as well [1]. To our knowledge, combining
an augmented model with discriminative training remains untreated, while both
approaches serve a similar purpose, i.e compensating for unmodeled aspects of
the real system.

2.2 Heterogeneous Bayes filters with sparse Bayesian model

To overcome BF unability to deal with context influence, an augmented model
is introduced, whose particularity is to explicit the context repercussion over the
measurement process. It relies on an additional observation variable ct relating
to the perception context. As suggested in previous work [12, 11], this additional
observation can consist in the joint set – or subset – of sensor measurement
values yt possibly extended with any relevant contextual information it (any
other sensor measurement, robot internal data, or any information that might
influence the measurement emission process). It is assumed that this joint set of
measurements defines a proper representation space for the contextual influence
over measurement noise, i.e there exists a mapping from the context input space
to the observation noise level.

To further avoid ambiguities in the contribution of two distinct models g and
ν in the measurement process, we assume that the noise free component g of the
emission model is known and homogeneous in time, since it can generally be ob-
tained directly through physical considerations about the nominal measurement
generation process. This results in an emission model of the form:

yt = g(xt) + ν(ct)

Reminding the goal of this model is to enhance a Kalman filter, ν(ct) is then a
zero mean Gaussian noise distribution with context-dependent variance:

ν(ct) ∼ N
(

0, r(ct)
)

To avoid making any assumption over the functional form for the variance model,
and keep computational efficiency, r(ct) is modeled with the Relevance Vector
Machine (RVM) framework [15], naturally providing sparsity thanks to the au-

tomatic relevance determination mechanism. For a given training set of T ob-
servations {ci}

T
i=1, we define r(ct) = exp(zt) to ensure variance positivity where

zt is given by

zt =

T
∑

i=1

wiK(ct, ci) + w0 + ǫ (2)

with w0 a bias parameter, K the chosen kernel function, and ǫ ∼ N (0, σ2
ǫ ). To

foster sparsification, a zero-mean Gaussian prior is placed over the weight vector
w = (w0, w1, .., wN )T :

p(w|α) =
N
∏

i=0

N (wi|0, α
−1
i )



Fig. 2. Bayes Filter with heterogeneous emission noise.

where we define uniform hyperparameters priors over α = (α0, α1, ..., αN )T .
So far, the model has been depicted for a one-dimensional observation space.

Real applications however require to consider the multi-dimensional case. For an
observation variable yt ∈ R

D, D distinct RVM models are then used to model
each component of the noise covariance matrix ν(ct). For clarity, the next sec-
tions only consider the one-dimensional case, the extension to higher dimensions
being straightforward. The resulting graphical model of this augmented model
is depicted in Fig. 2.

3 Generative training

Bayes filter parameter optimization is usually done by minimizing the likelihood
of the training set [4, 2], considering the latent state variable remains unobserved.
In this work, we assume that the training set also contains ground truth data,
i.e accurate values of the state variables x = {x1, ..., xT }. The issue of training
the emission model then turns to be analogous to the regression task, and more
specifically to the heteroscedastic regression task with nonparametric models [5,
7, 10, 8, 9]. Note however that the training task is here a bit simpler since the
observation function g is fixed and only the model ν(ct) has to be determined. If
sampling and variational approximation can be also used, the chosen approach
relies on hard-assignment Expectation Maximization (EM) as suggested in [7].
By using hard-assignment EM we iteratively estimate the RVM parameters and
predicted log noise level z at original inputs C = {ci}

T
i=1. Thanks to this ap-

proximation, we are able to make direct use of classical RVM optimization and
prediction equations, providing in this context the fastest solution for a real time
application.

Following Kersting et al. approach [7], the hard E-step consists in empirical
estimation of the noise variance. Based on real observations y = {y1, ..., yT } and



samples ykt provided by the current observation model (using the parameters α
and σǫ found after last EM iteration), the set of values yt and {ykt }

K
k=1 are seen

as independent noisy observations of g(xt). Empirical estimation of the noise
variance at xt is then provided by the mean

vart =
1

2.K

K
∑

k=1

(yt − ykt )
2

In the subsequent M-step the RVM model is trained with the new training set
D = {ct, log(vart)}

T
t=1 with a classical optimization procedure [15].

In other words, the optimization process considers the noise variance as the
hidden variable of the model, and iteratively optimize the parameters of the
RVM model based on a hard assignment of the estimated noise. This method
requires to use a substantial number of samples to empirically estimate the noise
variance and, as any hard-assignment EM, is prone to oscillating, requiring to
monitor the likelihood of the model over the training set after each algorithm
iteration. It however brings an important advantage, since the optimized model,
in association with the last noise variance estimation, can be readily used for
prediction using classical RVM equations.

4 Discriminative training

The previous learning approach aims at minimizing a loss function corresponding
to the emission likelihood. In other words the optimization step finds model
parameters explaining at best the measurement generation process. As suggested
in [1], it is however better to optimize the parameters with respect to the ultimate
system performance, i.e the accuracy of filter estimates. Training the model then
consists in finding αmax and σǫmax such that:

〈αmax, σǫmax〉 = argmax
α,σǫ

T
∑

t=1

log(p(xt|y1:t))

where p(xt|y1:t) is provided by Kalman equations. Considering f and g are linear
functions corresponding to the matrices F and G respectively (classical Kalman
filter case), we have:

p(xt|y1:t) = N (xt|µt, σt) (3)

with

µt = Fµt−1 +Kt(yt −GFµt−1)

σt = (I −KtG)Pt−1

Pt−1 = Fσt−1F
t +Σγ

Kt = Pt−1G
t(GPt−1G

t +Σν(ct))



Since this distribution requires the evaluation of two latent variables: the
log noise level and the RVM weight parameter, a procedure similar to Type II
maximum likelihood is employed. zt and w are then marginalized out and we
now seek for parameters αmax and σǫmax maximizing:

Ldiscr =

T
∑

t=1

log
(

∫ ∫

p(xt|y1:t, zt)p(zt|ct,w, σǫ)p(w|α) dw dzt

)

Since p(zt|ct,w, σǫ) and p(w|α) are both Gaussian, the integral with respect to
w is readily evaluated to give:

Ldiscr =
T
∑

t=1

log
(

∫

p(xt|y1:t, zt)N (zt|0, Dt)dzt

)

where Dt = σǫ+KTα−1K, with K the vector of kernel functions such that Ki =
K(ct, ci) as defined in (2), and A = diag(α). The last equation is analytically
intractable and is then approximated with integration by substitution and Gauss-
Hermite quadrature.

αmax and σǫmax are subsequently found by conjugate gradient ascent over
Ldiscr. Note that classical optimization of the RVM model requires the compu-
tation of a design matrix containing all kernel elements evaluated at all original
locations {ci}

T
i=1. Here, the optimization is done separately for each kernel vector

evaluated at ci, through their influence over ultimate filter performance. This
different form of training (by comparison to the one in [7]) then requires to foster
sparsity by thresholding of the αi values during the optimization process.

5 Inference

5.1 Generative training case

For the classical model of Fig.1, filtering consists in evaluating normalized marginal
distributions α̂(xt) = p(xt|y1, .., yt) with the recursion equation of the form:

ηtα̂(xt) = p(yt|xt)

∫

α̂(xt−1)p(xt|xt−1)dxt−1 (4)

where ηt = p(yt|y1, ..., yt−1) the scaling factor and p(yt|xt) and p(xt|xt−1) the
emission and prediction distribution considered as Gaussian for kalman filtering.
Since in the new model the noise level is considered as an additional latent
variable, the emission distribution required for the evaluation of (4) is now given
by:

p(yt|xt, ct) =

∫

N
(

yt|g(xt), exp(zt)
)

p(zt|ct, C, z, α, σǫ)dzt (5)

where z is the predicted log noise level at original inputs {ci}
T
i=1, and p(zt|ct, C, z, α, σǫ)

the predictive distribution given by:

p(zt|ct, C, z, α, σǫ) =

∫

p(zt|ct,w, σǫ)p(w|C, z, α, σǫ)dw (6)



This familiar predictive distribution [15] is also Gaussian. The evaluation of the
integral (5) is hence analytically intractable, and requires approximation. The
fastest approach is the most likely approximation, where we replace the inte-
gral by N

(

yt|g(xt), exp(z
∗
t )
)

with z∗t = argmaxzt p(zt|ct, C, z, α, σǫ). Note that
this approximation allows p(yt|xt, ct) to be a Gaussian distribution, a necessary
condition for using Kalman recursive equations.

5.2 Discriminative training case

Since discriminative training did not involve evaluation of the posterior distri-
bution of the noise level z, we can not make straightforward use of the RVM
prediction equation. Analogously to equation (5), evaluation of the emission dis-
tribution now requires to marginalize out the distribution over zt and z:

p(yt|xt, ct) =

∫ ∫

N
(

yt|g(xt), exp(zt)
)

p(zt, z|ct, C, χ, α, σǫ)dzdzt (7)

with χ = {x,y}. We can decompose the last term of the right-hand side of this
equation and write:

p(zt, z|ct, C, χ, α, σǫ) = p(zt|ct, C, z, α, σǫ)p(z|χ,C, α, σǫ)

and, as done previously for the generative case, replace the integral in (7) with
a point estimate of zt and z. Note that this approximation is mainly motivated
by its low computational cost, required for online filtering.

We turn to Gibbs sampling in order to evaluate at first a point estimate for
z, reminding we have:

p(z|x,y, C, α, σǫ) ∝ p(x|y, z)p(z|C,α, σǫ) (8)

As for standard Gibbs Sampling procedure, we then sample by cycling through
the different components of z. Noting zi the ith component of z, and z\i the
remaining components, we have:

p(zi|z\i,x,y, C, α, σǫ) ∝ p(xt=i|yt={1:i}, zi)p(zi|z\i, C, α, σǫ) (9)

where the first term of the right-hand side of (9) is given by the kalman equations
(3) and the last term is given by the RVM prediction equation (6). At first,
samples are drawn from p(zi|z\i, C, α, σǫ) and rejection is done according to the
term p(xt=i|yt={1:i}, zi). Intuitively, this procedure corresponds to maximizing
the discriminative likelihood of the noise level zi.

Once a point estimate for z is found, it can be used straightforwardly within
regular RVM prediction equation for zt. The remaining of the inference is then
similar to the procedure depicted for the generative training case.



6 Discussion

The aim of this work is to define a new Bayes filter model able to encompass
a variety of contexts, and to analyse different training approaches and their ex-
pected consequences over the system performance. Its specificities rely in the
introduction of an additional observation used for context identification, and in
the use of a sparse RVM model for context-dependent observation noise predic-
tion. The theoretical foundations have been presented and system performances
are currently being investigated. Note that the idea of introducing an additional
context variable has been tested in our previous work [12, 11] and proved to be
relevant for the simple task of context-dependent sensor selection (equivalent to
rejection). However experiments conducted so far concerned the simple task of
altitude estimation for an UAV, and the approach still has to be tested on more
complex scenarios involving numerous sensors and a broad range of contexts.

While augmenting Bayes filters with time-varying noise model plays a cen-
tral role in trying to compensate the optimistic assumptions usually made by
the classical model, the training method might also have major consequences
over the system performance. As such, discriminative training seems promising
in that it requires to run the filter during optimization while generative train-
ing focuses on the underlying emission and prediction processes. Discriminative
training nevertheless brings some particular issues, since at first, it does not al-
low to use classical training (and sparsification) method for the RVM model, but
also because the optimization process of Ldiscr is much more complex. Indeed,
each term of the discriminative loss function is strongly related to the preceding
one as a direct consequence of the recursive equations used for state estimation.
Classical RVM models already require the optimization of a nonconvex func-
tion, and we still need to study the consequences of the additional complexity
introduced along with this specific loss function. Besides this particular issue,
the use of discriminative training also ends up with some additional approxima-
tions during inference. Experiments will provide a better insight on how expected
benefits and inherent drawbacks of the discriminative method impact the system
performance, by comparison to the much simpler generative approach.
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