A simple well-balanced and positive numerical scheme for the shallow-water system - Archive ouverte HAL
Article Dans Une Revue Communications in Mathematical Sciences Année : 2015

A simple well-balanced and positive numerical scheme for the shallow-water system

Résumé

This work considers the numerical approximation of the shallow-water equations. In this context, one faces three important issues related to the well-balanced, positivity and entropy-preserving properties, as well as the ability to consider vacuum states. We propose a Godunov-type method based on the design of a three-wave Approximate Riemann Solver (ARS) which satisfies the first two properties and a weak form of the last one together. Regarding the entropy, the solver satisfies a discrete non-conservative entropy inequality. From a numerical point of view, we also investigate the validity of a conservative entropy inequality.
Fichier principal
Vignette du fichier
simple_wellbalanced_positive_ARS.pdf (1.12 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01083364 , version 1 (17-11-2014)
hal-01083364 , version 2 (12-01-2015)

Identifiants

Citer

Emmanuel Audusse, Christophe Chalons, Philippe Ung. A simple well-balanced and positive numerical scheme for the shallow-water system. Communications in Mathematical Sciences, 2015, 13 (5), pp.1317-1332. ⟨10.4310/CMS.2015.v13.n5.a11⟩. ⟨hal-01083364v2⟩
1023 Consultations
1095 Téléchargements

Altmetric

Partager

More