Kernel estimate and capacity in the Dirichlet spaces - Archive ouverte HAL Access content directly
Journal Articles Journal of Functional Analysis Year : 2019

Kernel estimate and capacity in the Dirichlet spaces

Omar El-Fallah
  • Function : Author
  • PersonId : 849735
Karim Kellay

Abstract

We study the capacity in the sense of Beurling-Deny associated with the Dirichlet space $\mathcal{D}(\mu)$ where $\mu$ is a finite positive Borel measure on the unit circle. First, we obtain a sharp asymptotic estimate of the norm of the reproducing kernel of $\mathcal{D}(\mu)$. It allows us to give an estimates of the capacity of points and arcs of the unit circle. We also provide a new conditions on closed sets to be polar. Our method is based on sharp estimates of norms of some outer functions which allow us to transfer these problems to an estimate of the reproducing kernel of an appropriate weighted Sobolev space.
Fichier principal
Vignette du fichier
EEK20171029H.pdf (219.08 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01083234 , version 1 (16-11-2014)
hal-01083234 , version 2 (29-10-2017)

Identifiers

  • HAL Id : hal-01083234 , version 2

Cite

Omar El-Fallah, Youssef Elmadani, Karim Kellay. Kernel estimate and capacity in the Dirichlet spaces. Journal of Functional Analysis, 2019, 276 (3), pp.867-895. ⟨hal-01083234v2⟩

Collections

CNRS IMB
584 View
409 Download

Share

Gmail Facebook X LinkedIn More