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Introduction

The reproducing kernel plays an important role in the study of Hilbert spaces of analytic functions. In particular, it allows to determine the rate of growth of functions near the boundary and its tangential behavior; their properties are closely related to embedding theorems, sampling and interpolation sets, and other topics. Here we shall be concerned with Dirichlet spaces D(µ).

Let H 2 denote the classical Hardy space of analytic functions on the unit disc D having square summable Taylor coefficients at the origin. Every function f ∈ H 2 has nontangential limits almost everywhere on the unit circle T = ∂D. We denote by f (ζ) the non-tangential limit of f at ζ ∈ T if it exists. Let µ be a positive finite measure on T, the Dirichlet space D(µ) is the set of analytic functions f ∈ H 2 , such that

D µ (f ) := 1 2π T T |f (ζ) -f (ξ)| 2 |ζ -ξ| 2 |dζ|dµ(ξ) < ∞.
The space D(µ) is endowed with the norm These spaces were introduced by Richter in [START_REF] Richter | Invariant subspaces of the Dirichlet shift[END_REF] by examining the 2-isometries on the Hilbert spaces. A bounded operator T in a Hilbert space H is called 2-isometry operator if

f 2 µ := f 2 H 2 + D µ (f ). If µ = 0, then D(µ) = H
T * 2 T 2 -2T * T -I = 0,
is said to be cyclic if there exists x ∈ H such that span{T n x, n ≥ 0} is dense in H and is called analytic if n≥0 T n H = {0}. Richter in [START_REF] Richter | Invariant subspaces of the Dirichlet shift[END_REF] proved that every cyclic, analytic 2-isometry can be represented as a multiplication by z on a Dirichlet space D(µ) for some positive finite measure µ on T.

As consequence [START_REF] Richter | A representation theorem for cyclic analytic two-isometries[END_REF][START_REF] Richter | Invariant subspaces of the Dirichlet shift[END_REF] Richter gave an analogue of Beurling's theorem for the classical Dirichlet space : every invariant subspace for D is of the form φD(µ φ ) where dµ φ = |φ| 2 dm and φ is an extremal function for D, that is φ µ = 1, and φ, z n φ = 0, n ≥ 1.

We refer to the monograph [START_REF] El-Fallah | A primer on the Dirichlet space[END_REF] for numerous results on the Dirichlet space. By representation theorem for bounded linear functionals on a Hilbert space, to each z ∈ D, there is unique element k µ (•, z) in D(µ), such that

f (z) = f, k µ (•, z) D(µ) , f ∈ D(µ).
The function k µ (ζ, z), with (ζ, z) ∈ D ×D, is called the reproducing kernel for D(µ). Let us Shimorin [START_REF] Shimorin | Complete Nevanlinna-Pick property of Dirichlet spaces[END_REF] proved that all Dirichlet spaces have complete Nevanlinna-Pick reproducing kernels. Let P [µ] be the Poisson integral of the positive finite measure µ on T

P [µ](z) = T 1 -|z| 2 |ζ -z| 2 dµ(ζ), z ∈ D.
In the following theorem, we provide an asymptotic estimate of the reproducing kernel k µ of D(µ) on the diagonal.

Theorem 1. Let µ be a finite positive measure on T. We have

k µ (z, z) ≍ 1 + |z| 0 dr (1 -r)P [µ](rz/|z|) + (1 -r) 2 ,
where the implied constants are absolute.

Our second aim here is to give estimates of capacity associated to the Dirichlet space D(µ) which is closely related to some notions of potential theory. Let D h (µ) be the harmonic version of D(µ) given by

D h (µ) := f ∈ L 2 (T) : f 2 µ := f 2 L 2 (T) + D µ (f ) < ∞ .
D h (µ) is a Dirichlet space in the sense of Beurling-Deny [START_REF] Beurling | Dirichlet spaces[END_REF]. Some aspects of the potential theory associated to the general Dirichlet spaces were studied in several papers (see for instance [START_REF] Fukushima | Dirichlet Forms and Symmetric Markov Processes[END_REF]). In this paper we will focus on the notion of capacity. We recall at first, the definition of capacity in the sense of Beurling-Deny. Let U be an open subset of the unit circle. The c µ -capacity of U is defined by

c µ (U) := inf u 2 µ : u ∈ D h (µ), u ≥ 0 and u ≥ 1 a.e. on U . (1) 
As usual we define the c µ -capacity of any subset F ⊂ T by

c µ (F ) = inf{c µ (U) : U open, F ⊂ U}.
Since the L 2 norm dominates the Dirichlet norm, it is completely obvious that sets having c µ -capacity 0 have Lebesgue measure 0. We say that a property holds c µ -quasi-everywhere (c µ -q.e.) if it holds everywhere outside a set of c µ -capacity 0. So, c µ -q.e. implies a.e.. A closed set of capacity zero will be called, throughout this paper, µ-polar set. If µ = m is the Lebesgue measure on T, then c µ = c m is comparable to the logarithmic capacity c, see [START_REF] Meyers | A theory of capacities for potentials of functions in Lebesgue classes[END_REF]Theorem 14] and [START_REF] Adams | Function spaces and potential theory[END_REF]Theorem 2.5.5]. Every function f ∈ D(µ) has non-tangential limits c µ -q.e. Furthermore, if E is a closed subset of T such that c µ (E) = 0, then there exists a cyclic function f ∈ D(µ) continuous on T and vanishing on E, see [START_REF] Elmadani | Cyclicity in the Dirichlet spaces[END_REF]. The generalized Brown-Shields conjecture asserts that an outer function f ∈ D(µ) is cyclic if and only if c µ (Z(f )) = 0, where Z(f ) is the zero set of f . In [6, Theorem 1] we prove that this conjecture is true for measures with countable support. We also give in this case a complete and explicit characterization of invariant subspaces see 

c µ ({e iθ }) > 0 ⇐⇒ 1 0 dr (1 -r)P [µ](re iθ ) + (1 -r) 2 < ∞. (2) 
This allows to construct examples of positive measure µ and a countable closed set E such that µ(E) = 0 and E is uniqueness set for D(µ) [START_REF] Bahajji | Havin-Mazya uniqueness theorem for Dirichlet space[END_REF]Corollary 3.6]. We obtain an estimate of capacity of arcs, more precisely we have Theorem 2. Let I ⊂ T be the arc of length |I| = 1 -ρ with the midpoint at ζ ∈ T. Then

1 c µ (I) ≍ 1 + ρ 0 dr (1 -r)P [µ](rζ) + (1 -r) 2 .
In the sequel we will suppose that E is a closed set which has Lebesgue measure zero and µ is a finite positive measure on T. Now our goal is to give sufficient condition on E to be µ-polar. Let us introduce the local modulus of continuity of µ on E which will play a crucial role in this paper. It is defined by

ρ µ,E (t) := sup{µ(ζe -it , ζe it ) : ζ ∈ E}. (3) 
Note that ρ µ,T = ρ µ is the classical modulus of continuity of µ. Let us write

E t := {ζ ∈ T : dist(ζ, E) ≤ t},
where dist denotes the distance with respect to arc-length, and denote by |E t | the Lebesgue measure of E t . We can express the function |E t | in terms of

N E (t) := 2 j 1 {|I j |>2t} ,
where (I j ) are the components of T\E, as follows

t 0 N E (s)ds = |E t |.
In Theorem 5.4, we give a sufficient conditions on a closed subset E, in terms of ρ µ,E and N E , to be µ-polar. To illustrate this theorem we give here some of its corollaries.

(i) If π 0 dt t 0 (ρ µ,E (s)N E (s)/s)ds = +∞, then c µ (E) = 0.
This result can be viewed as an extension of Carleson's Theorem [3, section IV, Theorem 2] which says that if

π 0 dt |E t | = ∞, then c(E) = 0.
In fact if µ = m then ρ µ,E (t) = t and c µ ≍ c (c is the logarithmic capacity).

(ii) Suppose that ρ µ,E (t) = O(t α ) with 1 ≤ α < 2. If π 0 dt t α-1 |E t | = +∞, then c µ (E) = 0. Our proof is different from the one given in [3] (iii) If ρ µ,E (t) = O(t α ) with α > 2, we have c µ (E) = 0.
Note also that if

t α = O(ρ µ,{1} (t)) with α < 1, then by (2), c µ ({1}) > 0.
The plan of the paper is the following. In the next section we recall two formulas of the Dirichlet norm; we also give punctual estimates of some outer functions. In Section 3, we obtain norm estimates of our test functions. In Section 4, we state diagonal asymptotic estimates of reproducing kernel. To prove the lower estimates of k µ (z, z), we establish a sharp norm estimates of some outer functions which peak near z. This allows us to transfer our problem to an estimation of the norm of the kernel of an appropriate weighted Sobolev space. In fact and roughly speaking, Theorem 1 says that k µ (z, z) ≍ K ϕ (1 -|z|, 1 -|z|) where K ϕ is the reproducing kernel of the weighted Sobolev space defined by

W 2 (ϕ) := f ∈ C (0, 2π] : f (x) = f (1) + 2π x g(t)dt, g ∈ L 2 ((0, 2π), ϕdt) , where ϕ(t) = tP [µ]((1 -t)z/|z|) + t 2 .
In section 5, we prove the results on capacities cited above. The proof of Theorem 5.4 uses an idea analogous to the proof of Theorem 1. However, our test functions must peak on the whole set E and the desired weighted Sobolev spaces will depend on µ and E. In fact, we prove that there is no bounded point evaluation at 0 for W 2 (ϕ) (where ϕ depends on ρ µ,E and N E ), then c µ (E) = 0. Note finally, that there is no bounded point evaluation at 0 for W 2 (ϕ) if and only if lim

t→0 + K ϕ (t, t) = ∞.
Throughout the paper, we use the following notations:

• A B means that there is an absolute constant C such that A ≤ CB.

• A ≍ B if both A B and B A hold.

• C(x 1 , . . . , x n ) denote a constant which depends only on variables x 1 , . . . , x n .

Preliminaries and technical lemmas

2.1. Norm formulas. In this subsection we recall some results about norm formulas in Dirichlet spaces which will be used in what follows.

For a finite positive measure µ on T, the harmonic Dirichlet space

D h (µ) consists of functions f ∈ L 2 (T) such that D µ (f ) := T D ξ (f )dµ(ξ) < ∞, where D ξ (f ) is the local Dirichlet integral of f at ξ ∈ T given by D ξ (f ) := T |f (e it ) -f (ξ)| 2 |e it -ξ| 2 dt 2π .
The Douglas' formula, see [START_REF] El-Fallah | A primer on the Dirichlet space[END_REF]Theorem 7.1.3], expresses the Dirichlet integral of a function f in terms of the Poisson transform of µ, namely

D µ (f ) = D |∇P [f ]| 2 P [µ]dA, f ∈ D h (µ),
where dA(z) = dxdy/π stands for the normalized area measure in D. In particular, if

f ∈ D(µ)(= D h (µ) ∩ H 2 ), Douglas' Formula becomes D µ (f ) := D |f ′ (z)| 2 P [µ](z)dA(z) < ∞.
Another useful formula, due to Richter and Sundberg [15, Theorem 3.1], gives the local Dirichlet integral of function f in terms of their zero sequence, their singular measure and the modulus of their radial limit. We will need, throughout this paper, the Richter-Sundberg formula mainly for outer functions. Recall that outer functions are given by

f (z) = exp T ζ + z ζ -z log ϕ(ζ) |dζ| 2π , (z ∈ D),
where ϕ is a positive function such that log ϕ ∈ L 1 (T). Note that the radial limit of f , noted also by f , exists a.e. and |f | = ϕ a.e. on T. We have the following Richer-Sundeberg formula [START_REF] Richter | A formula for the local Dirichlet integral[END_REF] (see also [START_REF] El-Fallah | A primer on the Dirichlet space[END_REF]Theorem 7.4.2])

Theorem 2.1. Let f ∈ H 2 be an outer function such that f (ζ) exists at ζ ∈ T. Then D ζ (f ) = T |f (λ)| 2 -|f (ζ)| 2 -2|f (ζ)| 2 log |f (λ)/f (ζ)| |λ -ζ| 2 |dλ| 2π . (4) 
2.2. Punctual estimates of test functions. The result obtained in this subsection will be used in the proof of the lower estimate of the kernel.

Lemma 2.2. Let 1/2 < r = 1 -a < 1 and let I k = [e ia k , e ia k+1 ] with a 0 = 0, a k = 2 k a (k ≥ 1). Let N be the integer such that 2 N a ≤ π < 2 N +1 a, then N -1 k=0 (k + 1)̟(r, I k , D) ≍ 1,
where ̟(r, I k , D) denotes the harmonic measure of I k at r in D.

Proof. Without loss of generality, we may suppose that 2 N a = π. Note that

N -1 k=0 (k + 1)̟(r, I k , D) ≥ N -1 k=0 ̟(r, I k , D) ≍ 1.
For the reverse inequality, let g(z) = log 1/|1 -rz|. Since g is harmonic in the neighbourhood of D,

g(z) = 1 2π π -π 1 -|z| 2 |1 -ze -iθ | 2 log 1 |1 -re iθ | dθ.
So,

g(r) = log 1 1 -r 2 = N -1 k=0 1 π a k+1 a k 1 -r 2 |1 -re -iθ | 2 log 1 |1 -re iθ | dθ. (5) 
For k = 0, . . . , N -1, and θ ∈ (a k , a k+1 ), we have

1 |1 -re iθ | ≍ 1 2 k 1 1 -r . By (5), we get log 1 1 -r 2 = log 1 1 -r -log 2 N -1 k=0 k̟(r, I k , D) + O(1)
and our result follows.

Let w : (0, π) → (0, +∞) be a continuous positive function such that log w ∈ L 1 (T). As before f w denote the outer function satisfying

|f w (e it )| = w(|t|) a.e. on (-π, π). ( 6 
)
Proposition 2.3. Let w : (-π, π) → (0, +∞) be an even continuous positive decreasing function such that log w ∈ L 1 (T). Suppose that w(x) ≤ 2w(2x). Let f w be an outer function given by [START_REF] El-Fallah | Cyclicity and invariant subspaces in The Dirichlet space[END_REF]. Then

w(1 -r) |f w (r)|, 0 ≤ r < 1.
Proof. Let a , I k and N as in lemma 2.2, and suppose that a N = π. We have

|f w (r)| = exp N -1 k=0 1 π I k 1 -r 2 |1 -re iθ | 2 log w(θ)dθ ≥ exp N -1 k=0 log ω(2 k+1 a) 1 π I k 1 -r 2 |1 -re iθ | 2 dθ ≥ exp N -1 k=0 (log ω(a) -(k + 1) log 2) 1 π I k 1 -r 2 |1 -re iθ | 2 dθ ≥ exp log w(a) N -1 k=0 ̟(r, I k , D) -log 2 N -1 k=0 (k + 1)̟(r, I k , D) .
We obtain from Lemma 2.2, that w(1 -r) |f w (r)|. The case a N < π can be treated in the same way by taking into account the interval [e ia N , e iπ ].

Regularization lemma.

Let µ be a positive finite measure on T, we set dµ(s) = dµ(e is ). Denote by

µ(s) = µ([e -is , e is ]) (0 ≤ s ≤ π) and µ(s) = µ(π) (s > π). Let F µ (x) = π -π x 2 x 2 + s 2 dµ(s) x > 0. ( 7 
)
Note that F µ is increasing and F µ (x)/x 2 is decreasing. We extend F µ at the origin by F µ (0) = F µ (0 + ). In the following lemma we collect some elementary properties of F µ which will be used in the sequel.

Lemma 2.4. Let ν be a positive finite measure on T. We have the following

(1) F ν (x) ≍ xP [ν](1 -x), for x > 0, (2) ν(x) F ν (x) for x ≥ 0, (3) 
x≤|s|≤π dν(s) s 2 F ν (x) x 2 , for x > 0, (4) If h is a positive monotone function on (0, π). Then a -a h(|x|)dν(x) a 0 h(x) x ν(2x)dx, (5) If ν(2x) ≤ c ν(x) for some constant c < 4, then F ν (x) ν(x) 4 -c . Proof. (1) For x ∈ (0, 1/2) we have obviously x(1 -(1 -x) 2 ) ≍ x 2 and |e iθ -(1 -x)| 2 ≍ x 2 + θ 2 . Hence xP [ν](1 -x) = π -π x(1 -(1 -x) 2 ) |e iθ -(1 -x)| 2 dν(θ) ≍ π -π x 2 x 2 + θ 2 dν(θ) = F ν (x).
(2) Let x ≥ 0, we have

ν(x) = x -x dν(θ) = x -x x 2 x 2 + θ 2 dν(θ) + x -x θ 2 x 2 + θ 2 dν(θ) ≤ 2 x -x x 2 x 2 + θ 2 dν(θ) = 2F µ (x). (3) Fix x > 0, we have x<|s|<π dν(s) s 2 = +∞ n=0 2 n+1 x 2 n x dν(s) s 2 ≍ 1 x 2 +∞ n=0 1 2 2n x 2 2 n+1 x 2 n x dν(s) = 1 x 2 +∞ n=0 1 2 2n 2 n+1 x 2 n x x 2 + s 2 x 2 + s 2 dν(s) ≤ 4 x 2 +∞ n=0 2 n+1 x 2 n x x 2 x 2 + s 2 dν(s) ≤ 4 F ν (x) x 2 .
To prove (4) suppose that h is a decreasing function. Clearly if ν({0}) > 0, then (4) is obvious. So, suppose that ν({0}) = 0. We have

a -a h(|x|)dν(x) = n≥0 2 -n a 2 -(n+1) a h(x)(dν(x) + dν(-x)) m n=0 h(2 -n a) ν(2 -n a) a 0 h(x) x ν(2x)dx.
Analogue argument works if h is increasing. Finally to prove [START_REF] Bahajji | Havin-Mazya uniqueness theorem for Dirichlet space[END_REF], suppose that ν(2x) ≤ c ν(x) with c < 4. We have ν(2 n x) ≤ c n ν(x) and

|t|≥x dν(t) t 2 dt = n≥0 2 n x≤|t|≤2 n+1 x dν(t) t 2 ≤ n≥0 ν(2 n+1 x) 2 2n x 2 ≤ 4c 4 -c ν(x) x 2 . So F ν (x) ≤ ν(x) + |θ|>x x 2 x 2 + θ 2 dν(θ) ≤ ν(x) + x 2 θ≥x dν(x) θ 2 ν(x) 4 -c .

Norm estimate of test functions

3.1. Norm estimate of analytic test functions. The purpose of this subsection is to give an estimate of norms of some outer functions which play an important role in what follows.

The following lemma is the first step to prove Theorem 3.2.

Lemma 3.1. Let w : [0, π] → (0, +∞) be a C 1 decreasing convex function such that w(x) ≤ 2w(2x). Suppose that x 2 |w ′ (x)| is increasing and let f w be the outer function given by [START_REF] El-Fallah | Cyclicity and invariant subspaces in The Dirichlet space[END_REF].

Then D µ (f w ) J 1 + J 2 + J 3 ,
where

J 1 := π x=0 x y=0 |w ′ (y)|w(y) |w ′ (x)| w(x) µ(y)
x dxdy,

J 2 := π s=-π w ′ (s) 2 sdµ(s), J 3 := π x=0 π y=x x|w ′ (y)|w(y) |w ′ (x)| w(x) y≤|s|≤π dµ(s) s 2 dxdy.
Proof. Without loss of generality, we may assume that dµ(s) = dµ(-s). By Richter-Sundberg formula (4) we have Since w(2x) ≍ w(x) and w ′ (2x) ≍ w ′ (x), we have

D e is (f w ) = 8 2π π t=0 t x=s x y=s w ′ (y)w(y) w ′ (x) w(x) dydx dt |e is -e it | 2 .
I 2 = π s=0 2s t=s/2 t x=s x y=s w ′ (y)w ′ (x) w(y) w(x) dydxdt dµ(s) |e is -e it | 2 ≍ π s=0 w ′ (s) 2 2s t=s/2 t x=s x y=s dydxdt dµ(s) (s -t) 2 = 1 2 π s=0 w ′ (s) 2 2s t=s/2 (s -t) 2 dt dµ(s) (s -t) 2 = 3 4 π s=-π w ′ (s) 2 sdµ(s).
Hence [START_REF] El-Fallah | Cyclicity and invariant subspaces in The Dirichlet space[END_REF].

I 2 ≍ π s=-π w ′ (s) 2 sdµ(s). If 0 ≤ t ≤ s/2,
Then D µ (f w ) F µ w ′ ∞ w ∞
, where F µ is given by [START_REF] El-Fallah | A primer on the Dirichlet space[END_REF].

Proof. By (3) of Lemma 2.4, we have µ ≤ F µ . Now Lemma 3.1 gives

J 3 π x=0 π y=x |w ′ (y)|w(y) |w ′ (x)| w(x) F µ (y) y 2 xdydx F µ w ′ ∞ π x=0 π y=x |w ′ (x)| w(y)x w(x)y 2 dydx F µ w ′ ∞ π x=0 π y=x |w ′ (x)| x y 2 dydx F µ w ′ ∞ w ∞ .
Note that x|w ′ (x)| w(x) for all x ∈]0, π]. Indeed, since w(2x) ≍ w(x) and |w ′ (2x)| ≍ |w ′ (x)|, it suffices to prove the inequality for x ∈ [0, π/2]. We have

w(x) ≥ π x t 2 |w ′ (t)| dt t 2 ≥ x 2 |w ′ (x)| 1 x - 1 π ≥ x 2 |w ′ (x)|.
So, again by Lemma 2.4 we get

J 1 F µ w ′ ∞ π x=0 x y=0 |w ′ (x)| w(y) w(x)x dydx F µ w ′ ∞ π x=0 x y=0 π u=y |w ′ (x)||w ′ (u)| w(x)x dudydx + F µ w ′ ∞ π x=0 x y=0 |w ′ (x)| w(π) w(x)x dydx = J 12 + J 22 .
We have

J 12 F µ w ′ ∞ π u=0 π x=0 min(u,x) y=0 |w ′ (x)||w ′ (u)| w(x)x dudydx F µ w ′ ∞ π u=0 u x=0 |w ′ (x)w ′ (u)| w(x) dudx + π u=0 π x=u u|w ′ (x)w ′ (u)| xw(x) dudx F µ w ′ ∞ π x=0 |w ′ (x)|dx + π u=0 π x=u u|w ′ (x)w ′ (u)| xw(x) dudx) F µ w ′ ∞ w ∞ + π u=0 π x=u u|w ′ (u)| x 2 dudx F µ w ′ ∞ w ∞ .
Since w is decreasing, we get

J 22 ≤ F µ w ′ ∞ π x=0 x y=0 |w ′ (x)| dx x dy ≤ F µ w ′ ∞ w ∞ .
Finally, applying (4) of Lemma 2.4 with dν(s) = sdµ(s), we have ν(t) ≤ t µ(t) and

J 2 π 0 w ′ (t) 2 t ν(2t)dt F µ w ′ ∞ w ∞ .
3.2. Norm estimate of test functions in D h (µ). Our goal here is to give an estimate of the norm of some distance functions in D h (µ) (For analytic distance functions see [START_REF] El-Fallah | On the Brown-Shields conjecture for the cyclicity in the Dirichlet space[END_REF]).The result of this subsection will be used in the proof of Theorem 5.4.

Let E be a closed subset of T, µ be a positive finite measure and denote by ρ µ,E the local modulus of continuity of µ on E given by

ρ µ,E (t) = sup ζ∈E µ(ζe -it , ζe -it ).
Note that ρ µ,{1} (t) = µ(t). Recall that

N E (t) := 2 j 1 {|I j |>2t}
where (I j ) are the components of T\E. Note also that for every measurable function

Ω : (0, π] → R + T Ω(dist(ζ, E))|dζ| = π 0 Ω(t)N E (t)dt. ( 8 
)
Lemma 3.3. Let Ω : (0, π] → R + be a positive decreasing function, then

T Ω(dist(ζ, E))dµ(ζ) 1 0 Ω(t) ρ µ,E (t) t N E (t)dt.
Proof. Write T \ E = ∪ n I n , where (I n ) n = (e iαn , e iβn ) n are the components of T \ E. Let dµ n (t) = dµ(t + α n ) + dµ(β n -t), By Lemma 2.4

In

Ω(dist(ζ, E))dµ(ζ) ≍ |In|/2 0 Ω(t)dµ n (t) |In|/2 0 Ω(t) µ n (t) t dt |In|/2 0 Ω(t) ρ µ,E (t) t dt.
Summing over all I n , we get

T Ω(dist(ζ, E))dµ(ζ) 1 0 Ω(t) ρ µ,E (t) t N E (t)dt,
and the proof is complete. 

I 1 := π 0 π 0 (w(t) -w(t + s)) 2 s 2 ρ µ,E (t) t N E (t)dsdt, I 2 = π 0 w ′ (t) 2 ρ µ,E (2t)N E (t)dt, I 3 := π t=0 π s=t (w(t) -w(t + s)) 2 s 2 ρ µ,E (s) s N E (t)dsdt, Proof. Set δ = dist(ζ, E) and δ ′ = d(ζ ′ , E)
. By Lemma 3.3 we have

J 1 = 1 2π T δ ′ ≤δ (w(δ) -w(δ ′ )) 2 |ζ -ζ ′ | 2 |dζ|dµ(ζ ′ ) T δ ′ ≤δ (w(δ ′ ) -w(δ ′ + |ζ -ζ ′ |)) 2 |ζ -ζ ′ | 2 |dζ|dµ(ζ ′ ) T π s=0 (w(δ ′ ) -w(δ ′ + s)) 2 s 2 dsdµ(ζ ′ ) π 0 π 0 (w(t) -w(t + s)) 2 s 2 ρ µ,E (t) t N E (t)dsdt,
and

J 2 = 1 2π T δ≤δ ′ (w(δ) -w(δ ′ )) 2 |ζ -ζ ′ | 2 dµ(ζ ′ )|dζ| T T (w(δ) -w(δ + |ζ -ζ ′ |)) 2 |ζ -ζ ′ | 2 dµ(ζ ′ )|dζ| ζ∈T |ζ ′ -ζ|≤δ + ζ∈T |ζ ′ -ζ|≥δ = J 21 + J 22 .
Clearly we have

J 21 = T |ζ-ζ ′ |≤δ w ′ (x δ,|ζ-ζ ′ | ) 2 dµ(ζ ′ )|dζ|, where x δ,|ζ-ζ ′ | ∈ (δ, δ + |ζ -ζ ′ |). Since w is convex, then J 21 ≤ T w ′ (2δ) 2 |ζ-ζ ′ |≤δ dµ(ζ ′ )|dζ| ≤ T w ′ (2δ) 2 ρ µ,E (δ)|dζ|.
Hence by ( 8) we get

J 21 T w ′ (δ) 2 ρ µ,E (2δ)|dζ| π 0 w ′ (t) 2 ρ µ,E (2t)N E (t)dt.
With the same calculation, as in Lemma 3.3, we have

T T Ω(dist(ζ ′ , F )dµ(ζ ′ )|dζ|
where Ω(s) = 1 {s≥δ} w(δ) -w(δ + s) s 2 and F = {ζ}. Then

J 22 T π 0 Ω(s) µ(ζe -is , ζe is ) s ds|dζ| = T π 0 w(δ) -w(δ + s) s 2 µ(ζe -is , ζe is ) s ds|dζ|.
Again by ( 8) we get

J 22 π t=0 π s=t (w(t) -w(t + s)) 2 s 2 ρ µ,E (s) s N E (t)dsdt.
Since D µ (w) = J 1 + J 2 , we get our result.

For a positive increasing function ψ such that ψ(0) = 0, we set

M ψ,E (s) = max s 0 ψ(t) t N E (t)dt, ψ(s) s |E s | , (9) 
where

E t = {ζ ∈ E : dist(ζ, E) ≤ t}.
If ψ is concave, then ψ(x)/x is decreasing and

ψ(s) s |E s | ≤ ψ(s) s s 0 N E (t)dt ≤ s 0 ψ(t) t N E (t)dt = M ψ,E (s).
And if ψ is convex then ψ(x)/x is increasing, so

s 0 ψ(t) t N E (t)dt ≤ ψ(s) s s 0 N E (t)dt = ψ(s) s |E s | = M ψ,E (s).
The function ψ is called α-admissible if ψ is concave or convex and ψ(s)/s α is decreasing for some α > 0. Now we can state the main result of this subsection Theorem 3.5. Let E be a closed subset of T. Let w be a convex decreasing function and let Ω(ζ) = w(dist(ζ, E)). Suppose that there exists an α-admissible function ψ, with α < 2, such that ρ µ,E (s) ≤ ψ(s). Then

D µ (Ω) ≤ C(α) w ′ M ψ,E ∞ w ∞ .
Proof. We apply lemma 3.4. An analogue calculation, as in the proof of Theorem 3.2, gives

I 1 + I 2 w ′ M ρ µ,E ,E ∞ w ∞ .
Estimates of I 1 : we have

I 1 = π 0 π 0 (w(t) -w(t + s)) 2 s 2 ρ µ,E (t) t N E (t)dsdt, = π 0 π 0 w ′ (x t,s ) 2 ρ µ,E (t) t N E (t)dsdt,
where x t,s ∈ (t, t + s). Since w is convex, we get

I 1 ≤ π t=0 π s=0 w ′ (t + s) 2 ρ µ,E (t) t N E (t)dsdt = π t=0 t s=0 . . . + π t=0 π s=t ≤ π t=0 w ′ (2t) 2 ρ µ,E N E (t)dt + π t=0 π s=t w ′ (2s) 2 ρ µ,E (t) t N E (t)dsdt ≤ π t=0 w ′ (2t) 2 ρ µ,E N E (t)dt + π s=0 w ′ (2s) 2 s t=0 ρ µ,E (t) t N E (t)dtds ≤ 2 π 0 w ′ (t) 2 M ρ µ,E (t)dt ≤ 2 w ′ M ψ,E ∞ w ∞ .
Estimates of I 2 , we have

I 2 = π 0 w ′ (t) 2 ρ µ,E (t)N E (t)dt ≤ 2 π 0 w ′ (t) 2 M ρ µ,E (t)dt ≤ 2 w ′ M ψ,E ∞ w ∞ .
Now we consider the integral I 3 . We have

I 3 = 2 π t=0 π s=t t+s u=t t+s v=t w ′ (u)w ′ (v) ρ µ,E (s) s 3 N E (t)dvdudsdt π t=0 π s=t 2s u=t 2s v=t |w ′ (u)||w ′ (v)| ρ µ,E (s) s 3 N E (t)dvdudsdt π v=0 |w ′ (v)| ψ(v) v 2 v u=0 |w ′ (u)||E u |dudv π v=0 |w ′ (v)| 1 v 2-α v u=0 |w ′ (u)| ψ(u) u α |E u |dudv ≤ C(α) sup u |w ′ (u)| ψ(u) u |E u | π v=0 |w ′ (v)| 1 v 2-α v 2-α dv ≤ C(α) sup u |w ′ (u)| ψ(u) u |E u | w ∞ .
Corollary 3.6. Let E be a closed subset of T. Let w be a convex decreasing function and let

Ω(ζ) = w(dist(ζ, E)). Suppose that ρ µ,E (t) = O(t α ) for some α > 0. Then (1) D µ (Ω) ≤ C(α) sup t≥0 w ′ (t) π t t α-1 N E (t)dt × w ∞ , if 0 < α ≤ 1, (2) 
D µ (Ω) ≤ C(α) sup t≥0 w ′ (t)t α-1 |E t | × w ∞ , if 1 ≤ α < 2, (3) D µ (Ω) ≤ C(α) sup t≥0 w ′ (t)| log t||E t | × w ∞ , if α = 2, (4) D µ (Ω) ≤ C(α, h) sup t≥0 w ′ (t)h(t)|E t | × w ∞ , if α > 2,
where h is a positive increasing function such that h(0) = 0 and 0 ds/h(s) < ∞.

Proof. (1) and ( 2) are direct consequences of Theorem 3.5. Now we prove (3). The proof of Theorem 3.5 gives

I 3 π v=0 |w ′ (v)| log 1 v v u=0 |w ′ (u)||E u |dudv,
and we get our estimate. Finally we prove (4). Since |E t | → 0, then there exists a positive increasing function h, h(0) = 0, such that 0 ds/h(s) < ∞. Again, by the proof of Theorem 3.5 we have

I 3 C(α) π v=0 |w ′ (v)| v u=0 h(u) h(u) |w ′ (u)||E u |dudv,
which gives the desired estimate.

kernel estimate

In this section we will prove Theorem 1. The reproducing kernel k µ of D(µ) is defined by,

f (z) = f, k µ (•, z) , f ∈ D(µ), z ∈ D. So, k µ (z, z) = sup{|f (z)| 2 : f ∈ D(µ), f 2 µ ≤ 1}. ( 10 
)
It follows obviously that for |z| ≤ 1/2 we have

k µ (z, z) ≍ 1 + |z| 0 dr (1 -r)P [µ](rz/|z|) + (1 -r) 2 .
By Littlewood-Paley identity, we have

f 2 µ = f 2 H 2 + D µ (f ) = |f (0)| 2 + D |f ′ (w)| 2 |[| log |w|| + P [µ](w)]dA(w) ≍ |f (0)| 2 + D |f ′ (w)| 2 |[(1 -|w|) + P [µ](w)]dA(w).
Let f ∈ D(µ)\{0} and let f = I f O f be the inner-outer factorization of f . Then O f ∈ D(µ) and D µ (O f ) ≤ D µ (f ) (see [START_REF] Richter | A formula for the local Dirichlet integral[END_REF]). Thus by [START_REF] Fukushima | Dirichlet Forms and Symmetric Markov Processes[END_REF], we get

k µ (z, z) = sup{|f (z)| 2 : f ∈ D(µ) outer function and f µ ≤ 1}. ( 11 
)
This observation will be useful in the proof of the lower estimate. 

k µ (ρ, ρ) 1 + 1 1-ρ dx F µ (x) + x 2 . Let f ∈ D(µ), since f ∈ H 2 , |f (iy)| ≤ f H 2 √ 1 -y ≤ √ 2 f H 2 , 0 < y < 1/2.
So, for 0 < y < 1/2, we have

|f (ρ + i(1 -ρ)y)| = f (iy) + ρ 0 f ′ (t + i(1 -t)y)dt ρ 0 |f ′ (t + i(1 -t)y)|dt + f H 2 .
Let ∆ be the triangle with vertices -i/2, 1, i/2 and let ∆ ρ = {x + iy ∈ ∆ : 0 ≤ x ≤ ρ}. By change of variables w = u + iv = t + i(1 -t)y, we get

1 1 -ρ (1-ρ)/2 -(1-ρ)/2 |f (ρ + iη)|dη = 1/2 -1/2 |f (ρ + i(1 -ρ)y)|dy ρ 0 1/2 -1/2 |f ′ (t + i(1 -t)y)|dydt + f H 2 ∆ρ |f ′ (w)| dudv 1 -u + f H 2 D µ (f ) 1/2 ∆ρ dA(w) (1 -u) 2 ((1 -|w|) + P [µ](w)) 1/2 + f H 2 D µ (f ) 1/2 ρ 0 du (1 -u) 2 + (1 -u)P [µ](u) 1/2 + f H 2 D µ (f ) 1/2 1 1-ρ dx F µ (x) + x 2 1/2 + f H 2 . ( 12 
)
Denote by D(λ, r) the disc of radius r centered at λ. Since 

|f (ρ)| 1 (1 -ρ) 2 ρ+ 1-ρ 4 x=ρ-1-ρ 4 1-x 2 y=-1-x 2 |f (x + iy)dy dx D µ (f ) 1/2 1 5 4 (1-ρ) dx F µ (x) + x 2 1/2 + f H 2 (13) 
Now from [START_REF] Fukushima | Dirichlet Forms and Symmetric Markov Processes[END_REF], we get

k µ (ρ, ρ) 1 + 1 1-ρ dx F µ (x) + x 2 ≍ 1 + |z| 0 dr (1 -r)P [µ](rz/|z|) + (1 -r) 2 .
This achieves the proof. 4.2. Lower estimate.

Weighted Sobolev spaces.

In this subsection we introduce weighted Sobolev spaces which will be used in the proof of lower estimate of the norm of the kernel of D(µ) and in the proof of Theorem 5.4. Let ϕ be a nondecreasing continuous function. The Sobolev space associated with ϕ, W ∞ (ϕ), consists of real continuous functions f on ]0, 2π] given by

f (x) = f (2π) + 2π x g(s)ds, 0 < x ≤ 2π, ( 14 
)
where g is a measurable function satisfying

||gϕ|| ∞ = sup 0<x |g(x)|ϕ(x) < ∞.
As usual g will be denoted by f ′ . Equipped with the following norm 

f W ∞ (ϕ) = f ′ ϕ ∞ , W ∞ (ϕ)
0 dx ϕ(x) < ∞.
We say that f is regular, and write

f ∈ R, if f is a C 1 convex decreasing function on [0, 2π], satisfying f (2t) ≤ 2f (t) and t 2 |f ′ (t)| is increasing.
Our goal is to estimate

γ ϕ (a) = sup f 2 (a) : f ∈ W ∞ (ϕ) ∩ R, f W ∞ (ϕ) f ∞ + f 2 2 ≤ 1 .
First we will examine the Hilbertian case

W 2 (ϕ) = f of the form (14) : f 2 W 2 (ϕ) = f 2 2 + 2π 0 |f ′ (t)| 2 ϕ(t)dt < ∞ .
We also need the following subspace of W 2 (ϕ)

W 2 0 (ϕ) = f of the form (14) : f (2π) = 0, and f 2 W 2 0 (ϕ) = 2π 0 |f ′ (t)| 2 ϕ(t)dt < ∞ .
Clearly, evaluations at points of ]0, 2π] define continuous linear functionals on W 2 (ϕ) and on W 2 0 (ϕ). Let K ϕ , L ϕ be the reproducing kernels of W 2 (ϕ) and of W 2 0 (ϕ) respectively. A simple computation gives the following expression of the reproducing kernel L ϕ of W 2 0 (ϕ). We have

L ϕ (t, s) =        2π t dx ϕ(x) t ≥ s, L ϕ (s, s) t ≤ s. The estimates of K ϕ , on the diagonal is given by K ϕ (a, a) ≍ 1 + L ϕ (a, a) = 1 + 2π a dx ϕ(x) . It means that sup f (a) 2 : f ∈ W 2 (ϕ) , f 2 W 2 (ϕ) ≤ 1 ≍ 1 + 2π a dx ϕ(x) .
We have the following proposition.

Proposition 4.1. Suppose that t 2 /ϕ(t) is increasing and ϕ(t) ≥ t 2 . Let a < 1/2, we have

γ ϕ (a) ≍ K ϕ (a, a). Proof. Since f 2 W 2 (ϕ) ≤ f W ∞ (ϕ) f ∞ , then γ ϕ (a) ≤ K ϕ (a, a). Conversely, let f = f 0 + 1, where f 0 (x) = 2π 2π x+a 2π+a ds ϕ(s) , 0 < x ≤ 2π. Clearly f ∈ R. Since ϕ(2t) ≍ ϕ(t), we have f 0 2 2 = 2π 0 f 0 (t) 2 dt π 0 2π u=t+a 2π v=t+a 1 ϕ(u)ϕ(v) dudvdt a t=0 2π u=a 2π v=a 1 ϕ(u)ϕ(v) dudvdt + π t=a 2π u=t 2π v=t 1 ϕ(u)ϕ(v) dudvdt 2π u=a 2π v=a a ϕ(u)v 2 dudv + 2π u=a 2π v=u u ϕ(u)v 2 dudv f 0 ∞ . Then we obtain K ϕ (a, a) f (a) 2 f W ∞ (ϕ) f ∞ + f 2 2 ≤ γ ϕ (a).
And the proof is complete. Let ϕ(x) = F µ (x) + x 2 . By (11), Proposition 2.3 and Theorem 3.2 we have

k µ (r, r) |f w (r)| 2 f w 2 D(µ) w 2 (1 -r) w W ∞ (Fµ) w ∞ + w 2 2 w 2 (1 -r) w W ∞ (ϕ) w ∞ + w 2 2 . Thus k µ (r, r) γ ϕ (1 -r).
By Proposition 4.1, we obtain the result.

Capacity

Let µ be a positive finite measure on T and let c µ be the associated capacity given by [START_REF] Adams | Function spaces and potential theory[END_REF]. The capacity c µ is a Choquet capacity [START_REF] Carleson | Selected Problems on Exceptional sets[END_REF][START_REF] Guillot | Fine boundary behavior and invariant subspaces of harmonically weighted Dirichlet spaces[END_REF] and so for every borelian set of T we have As consequence of this inequality we have the following properties. (3) The radial limit lim r→1-f (rζ) exists and is finite for every f ∈ D h (µ) if and only if c µ (ζ) > 0.

Proof. See [START_REF] Chacón | Carleson-type measure on Dirichlet spaces[END_REF][START_REF] Guillot | Fine boundary behavior and invariant subspaces of harmonically weighted Dirichlet spaces[END_REF]. Now we will give the proof of the estimate of the capacity of arcs. Now we will give some sufficient conditions on a closed subset of T to be µ-polar. Let E be a closed subset of T. We define n E (ε), the ε-covering number of E, to be the smallest number of the closed arcs of length 2ε that cover E. Note that 

εn E (ε) ≤ |E ε | ≤ 4εn E (ε), 0 < ε ≤ π.

2

 2 and if dµ(e it ) = dm(t) = dt/2π, the normalized arc measure on T, then D(µ) is the classical Dirichlet space D.

[ 6 ,

 6 Theorem 2]. The generalized Brown-Shields conjecture is still open. Let ζ ∈ T, if µ = m then c m (ζ) = c(ζ) = 0 (c is the logarithmic capacity) and if µ = δ ζ , the dirac measure on ζ, then c δ ζ (ζ) > 0. In a more general way, since c µ (ζ) ≍ 1/ sup 0<ρ<1 k µ (ρζ, ρζ) (see [6, Lemma 3.2]), we get from Theorem 1

I 3 .

 3 To complete the proof we will estimate each term separately.If 2s ≤ t ≤ π, we have |t -s| ≥ t/2,

Lemma 3 . 4 .

 34 Let E be a closed subset of T. Let w be a convex decreasing function and let Ω(ζ) = w(dist(ζ, E)). Then D µ (Ω) I 1 + I 2 + I 3 , where

4. 1 .

 1 Proof of the upper estimate. Let z = ρ ∈ [1/2, 1). By Lemma 2.4, it suffices to prove that

D(ρ, ( 1 -

 1 ρ)/4) ⊂ {z = x + iy : |x -ρ| ≤ (1 -ρ)/4 and |y| ≤ (1 -x)/4}, by (12) and the subharmonicity of |f | we obtain

4. 2 . 2 .

 22 Proof of the lower estimates. Let z = r ∈]1/2, 1[ and let w ∈ R. We consider the outer function f w given by |f w (e it )| = w(|t|), a.e on [-π, π].

2 µ t 2

 22 c µ (E) = sup{c µ (K) : K compact , K ⊂ E}.Note that c µ satisfies a weak-type inequality. Namely:c µ ({ζ ∈ T : |f (ζ)| ≥ t c µ -q.e.}) ≤ f , f ∈ D h (µ).

Proposition 5 . 1 .

 51 The following properties are satisfied[START_REF] Adams | Function spaces and potential theory[END_REF] Let E ⊂ T be a Borel set and let M µ (E) := {f ∈ D(µ) : g|E = 0 c µ -q.e}. Then the set M µ (E) is closed in D(µ).

( 2 )

 2 If f ∈ D(µ) is cyclic for D(µ) then f is outer function and c µ (Z T (f )) = 0.

Proof Theorem 2 .✷ 5 . 2 . 0 dx ( 1

 25201 Suppose that ζ = 1. Let w ∈ R and let f w be the outer function satisfying |f w (e it )| = w(|t|), a.e on [-π, π]. It's clear that w(|I|) w(x) for |x| ≤ 2|I|. We have γ ϕ (|I|) 1/c µ (I). By proposition 4.1, we obtainc µ (I) 1/k µ (ρ, ρ), (ρ = 1 -|I|).For the reverse inequality note thatc µ (I) = inf{ f 2 µ : f ∈ C 1 , 0 ≤ f ≤ 1 and f = 1 on I}. Consider the function u ∈ D h (µ) such that 0 ≤ u ≤ 1 and u |I = 1. Hence u ∈ D h (µ) ∩ C 1 . We have P [u](1 -|I|) ≍ 1. Let ρ = 1 -|I|,a similar argument, as in the proof of (13), givesP [u](ρ) D µ (u) 1/2 k µ (ρ, ρ) + u L 2 (T) . So k µ (ρ, ρ) -1/2 D µ (u) 1/2, andc µ (I) ≥ 1 k µ (ρ, ρ).As an immediate consequence, we obtainCorollary Let λ ∈ T.c µ ({λ}) > 0 ⇐⇒ 1 -x)P [µ](xλ) + (1 -x) 2 < ∞.

Let κ µ

 µ (r) = inf{k µ (rζ, rζ) : ζ ∈ supp µ}.

It 's easy

  to see that κ µ is unbounded if and only if, for each ζ ∈ T, we have c µ (ζ) = 0. In this case one can prove easily, by the sub-additivity property of capacity, thatCorollary 5.3. Let E be a closed subset of T such that lim r→1 -κ µ (r) = ∞. If n E (ε) = o(κ µ (1 -ε)), ε → 0, then c µ (E) = 0. then c µ (E) = 0. (ii) If µ = mis the Lebesgue measure, then c µ is comparable to the logarithmic capacity and M µ,E (s) = |E s |. Theorem 5.4 says that if 0 dt |E t | = +∞, then c(E) = 0. This result is due to Carleson [3, Theorem 2, p.30]. (iii) Let K be a closed subset of T such that ρ µ,K (s) = O(s 1+β ) for some 0 < β. If β < 1, then every subset of K with Hausdorff dimension less than β is µ-polar. If β > 1, then every subset E of K with |E| = 0 is µ-polar. The following measures dµ(ζ) = dist(ζ, K) β dm(ζ) provide such examples.

  then |t -s| ≥ s/2, Suppose that x 2 |w ′ (x)| is increasing and let f w be the outer function given by

	I 3	π s=0	s t=0	s x=t	s y=x	|w ′ (y)|w(y)	|w ′ (x)| w(x)	dydx	dµ(s) s 2 dt
		π t=0	π x=t	π y=x	|w ′ (y)|w(y)	|w ′ (x)| w(x)	y≤|s|≤π	dµ(s) s 2 dt
		π x=0	π y=x	|w ′ (y)|w(y)	|w ′ (x)| w(x)	π y≤|s|≤π	dµ(s) s 2 xdxdy.
	Theorem 3.2. Let w : [0, π] → (0, +∞) be a C 1 decreasing convex function such that w(x) ≤ 2w(2x).

  is a Banach space. It becomes a topological Banach algebra, if and only if,
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Proof. Let (I i ) 0≤i≤n E (ε) be a ε-coverning of E, then

Recall that the function ψ is called α-admissible if ψ is concave or convex and ψ(s)/s α is decreasing for some α > 0. For a positive increasing function ψ on (0, 2π) such that ψ(0) = 0, we set

Now we can state the main result of this section.

Theorem 5.4. Let E be closed subset of T such that ρ µ,E ≤ ψ where ψ is α-admissible for some α < 2.

Proof. Note that M ψ,E is given by ( 5), so M ψ,E (s) is increasing. Let a > 0. By the definition of capacity and using Theorem 3.5 and Proposition 4.1 we have

.

When a goes to zero, we get

.

And the proof is complete.

Remarks. Now we give some examples:

(i) Let E be a closed subset of T and let