The geometry of the osculating nilpotent group structures of the Heisenberg calculus - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2014

The geometry of the osculating nilpotent group structures of the Heisenberg calculus

Résumé

We explore the geometry that underlies the osculating nilpotent group structures of the Heisenberg calculus.For a smooth manifold $M$ with a distribution $H\subseteq TM$ analysts use explicit (and rather complicated) coordinate formulas to define the nilpotent groups that are central to the calculus.Our aim in this paper is to provide insight in the intrinsic geometry that underlies these coordinate formulas.First, we introduce `parabolic arrows' as a generalization of tangent vectors. The definition of parabolic arrows involves a mix of first and second order derivatives.Parabolic arrows can be composed, and the group of parabolic arrows can be identified with the nilpotent groups of the (generalized) Heisenberg calculus.Secondly, we formulate a notion of exponential map for the fiber bundle of parabolic arrows, and show how it explains the coordinate formulas of osculating structures found in the literature on the Heisenberg calculus.The result is a conceptual simplification and unification of the treatment of the Heisenberg calculus.
Fichier principal
Vignette du fichier
parabolicarrows.pdf (267.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01081443 , version 1 (07-11-2014)

Identifiants

  • HAL Id : hal-01081443 , version 1

Citer

Pierre Julg, Erik van Erp. The geometry of the osculating nilpotent group structures of the Heisenberg calculus. 2014. ⟨hal-01081443⟩
117 Consultations
66 Téléchargements

Partager

More