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THE GEOMETRY OF THE OSCULATING NILPOTENT

GROUP STRUCTURES OF THE HEISENBERG CALCULUS

PIERRE JULG AND ERIK VAN ERP

Abstract

We explore the geometry that underlies the osculating nilpotent
group structures of the Heisenberg calculus. For a smooth man-
ifold M with a distribution H ⊆ TM analysts use explicit (and
rather complicated) coordinate formulas to define the nilpotent
groups that are central to the calculus. Our aim in this paper is
to provide insight in the intrinsic geometry that underlies these
coordinate formulas. First, we introduce ‘parabolic arrows’ as a
generalization of tangent vectors. The definition of parabolic ar-
rows involves a mix of first and second order derivatives. Parabolic
arrows can be composed, and the group of parabolic arrows can
be identified with the nilpotent groups of the (generalized) Heisen-
berg calculus. Secondly, we formulate a notion of exponential map
for the fiber bundle of parabolic arrows, and show how it explains
the coordinate formulas of osculating structures found in the lit-
erature on the Heisenberg calculus. The result is a conceptual
simplification and unification of the treatment of the Heisenberg
calculus.

1. Introduction: Osculating nilpotent groups in analysis and

geometry

1.1. Motivation. The ideas in this paper were motivated by the work of
the second author on index problems for hypoelliptic Fredholm operators in
the Heisenberg calculus [11,12]. The construction of an appropriate ‘tangent
groupoid’ for this index problem required a better geometric understanding
of the nilpotent group structures that appear in the definition of the Heisen-
berg pseudodifferential calculus. We believe that the geometric ideas that we
developed are of independent interest, and in the present paper we present
them without reference to index theoretical concerns. This introduction
provides an exposition of the history of the problem.

1.2. Nilpotent groups in analysis. Osculating group structures were first
introduced by Gerald Folland and Elias Stein [6] as an aid in the analysis of
the tangential CR operator ∂̄b on the boundary of a strongly pseudoconvex
complex domain. Let H1,0 ⊂ TM ⊗ C be a CR structure on M . At each
point m ∈ M , Folland and Stein consider a special type of coordinates
x ∈ R

2k+1 with x = 0 at m. The coordinate system needs to be adapted,
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in a suitable sense, to the CR structure. The coordinate space R
2k+1 is

identified with the Heisenberg group, and on R
2k+1 there are vector fields

X1, · · · ,Xk, Y1, · · · , Yk, T that are translation invariant for the Heisenberg
group structure, with commutator relations [Xj , Yj ] = T . These vector

fields on R
2k+1 are identified, via the carefully chosen coordinate system,

with vector fields on M defined in a neighborhood of m.
The choice of the coordinate system is such that the complex vector fields

Zj =
1

2
(Xj +

√
−1Yj)

are ‘close to’ an orthonormal frame for the bundle H1,0. Exactly what it
means to be ‘close to’ (or to ‘osculate’) is made precise in [6, Theorem 14.1].
Their precise notion of ‘closeness’ allows a reduction of the hypoellipticity
problem for the ∂̄b operator on a CR manifold to the hypoellipticity problem
for translation invariant model operators on the Heisenberg group, which,
in turn, is solved by noncommutative harmonic analysis.

Folland and Stein refer to their special coordinate systems as osculat-
ing Heisenberg structures. Osculating structures of nilpotent groups play a
key role in the subsequent literature on hypoelliptic operators (for example
[1, 5, 9, 10]). Following Folland and Stein, analysts typically choose local
coordinates U → R

n on an open set U ⊆ M , and define a nilpotent group
structure on the coordinate space R

n by means of an explicit formula.
For example, in [1] Richard Beals and Peter Greiner introduce osculat-

ing structures for Heisenberg manifolds. Heisenberg manifolds are manifolds
equipped with a distribution H ⊂ TM of codimension one. The distribu-
tion H may be a contact structure, a foliation, or it can be an arbitrary
distribution with no geometric significance. Beals and Greiner start with a
system of coordinates ψm that depends on the point m ∈ M and is loosely
adapted to the distribution H. Each point m ∈ M has its own coordinate
system ψm : Um → R

n for which ψm(m) = 0, while the coordinate systems
ψm themselves have to vary smoothly with m (in a neighborhood of m).
The group structure on the coordinate space Rn is not fixed, but is defined
by means of a rather complicated string of formulas (1.8), (1.11), (1.15) in
[1]. These formulas contain partial derivatives that measure the changes in
the coordinate system Φm as the point m varies. In this way, the nilpotent
group structure on R

n depends, in a rather complicated way, on the germ
of the distribution H near m.

As a final example, in [5] Thomas Cummins generalizes the Heisenberg
pseudodifferemtial calculus further to manifolds with a filtration H1 ⊆ H2 ⊆
H3 = TM , giving rise to three-step nilpotent osculating groups. Cummins’
formulas for the osculating group structure are very similar to (but more
general than) the formulas of Beals and Greiner.

It is hard to discern any intrinsic geometry underlying the coordinate
formulas that define the osculating group structures. The aim of this paper
is to clarify the geometric origin of these group structures, and to derive
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the formulas found in the analytic literature from geometrically intuitive
principles.

1.3. Nilpotent Lie algebras and the equivalence problem. In the geo-
metric literature, group structures that are closely related to the osculating
structures of the analysts have been around for some time. The oldest men-
tion of such structures is in work on the ‘equivalence problem’ introduced by
Cartan in 1910 [3]: Find a full set of infinitesimal invariants of a manifold
with distribution H ⊆M .

There exists a simple and elegant definition of the Lie algebra of our
nilpotent osculating groups. The basic equality,

[fX, gY ] = fg[X,Y ] + f(X.g)Y − g(Y.f)X,

shows that if X,Y are sections of H then modulo H the value of the bracket
[X,Y ](m) at m ∈M only depends on the values X(m) and Y (m) at m. In
other words, the commutator of vector fields induces a pointwise bracket,

Hm ⊗Hm → Hm : X ⊗ Y 7→ [X,Y ]modH,

where m ∈ M , and N = TM/H denotes the quotient bundle. This can
be extended to a Lie bracket on gm = Hm ⊕ Nm, by taking [gm, Nm] = 0.
Clearly, the Lie algebra gm is two-step nilpotent. The isomorphism class of
these Lie algebras is a first infinitesimal invariant of the distribution H.

One can verify that the Lie algebras gm are isomorphic to the Lie algebras
of the osculating groups of the analysts. However, this simple construction
does not fully clarify the osculating structure. The analysis of hypoelliptic
operators on a manifold M depends on an approximation of differential
operators on M by translation invariant operators on the nilpotent group.
This requires an identification of an open subset of the nilpotent group with
an open subset of the manifold, and the identification has to result in a ‘good’
approximation of operators. The Lie algebras gm are canonically identified
with the fibers of the vector bundle H ⊕ N , which we may identify (by a
choice of section N →֒ TM) with the tangent bundle TM . To identify a fiber
of TM with an open set in the manifold (locally) we need an exponential
map TM → M . However, not every exponential map gives the desired
degree of ‘closeness’ of operators on the group and on the manifold. To
achieve a satisfactory explanation of the formulas of the analysts we must
clarify which exponential maps ‘osculate’ the distribution H on the manifold
sufficiently closely, and precisely in what sense.

Before we can understand what the correct exponential maps are, we
must clear up one final missing link. The geometric literature provides an
intrinsic definition of a bundle of nilpotent Lie algebras, which is derived
from the Lie algebra of vector fields. The analysis of hypoelliptic operators
requires a system of osculating nilpotent groups. The distinction turns out
to be relevant.
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1.4. Nilpotent groups in sub-Riemannian geometry. Nilpotent group
structures also play a role in sub-Riemannian geometry. A sub-Riemannian
manifold is a manifold M together with a distribution H ⊂ TM and a
metric on H. In sub-Riemannian geometry the tangent space TmM at a
so-called ‘regular’ point m ∈ M carries the structure of a nilpotent group.
In the special case where [H,H] = TM (brackets of vector fields in H span
TM at each point in M) this group is isomorphic to the osculating group.
The group structure is defined by exponentiating the Lie algebra structure
gm = Hm ⊕ Nm introduced in the previous section. In sub-Riemannian
geometry it is really the group structure on TmM that is of interest, not
the Lie algebra structure. It is the tangent space as a group that makes it
a useful approximation to the manifold as a sub-Riemannian metric space.
The sense in which the geometry of the nilpotent group approximates the
geometry of the sub-Riemannian manifold is closely related to the notion of
‘osculation’ of operators as it appears in analysis.

In [2, p.73–76] André Belläıche considers the question, “Why is the tan-
gent space a group?” Belläıche asks whether, in the context of sub-Riemannian
geometry, there is a more direct definition of the group structure on TmM
(or on Hm ⊕ Nm). Is there a way to define the group structure that does
not depend on a prior definition of the Lie algebra? Can we explain geomet-
rically how composition of group elements arises? As we will show in this
paper, it is precisely the formulation of a satisfactory answer to this ques-
tion that leads to the appropriate notion of ‘osculating’ exponential maps,
which, in turn, fully clarifies the intrinsic geometry underlying the osculating
structures of the Heisenberg calculus.

It is interesting to note that Belläıche considers whether Alain Connes’
tangent groupoid could contain a hint of how to answer his questions. The
tangent groupoid is obtained by taking the trivial groupoid M × M and
‘blowing up the diagonal’. Composition of pairs in M ×M is

(a, b) · (c, d)
{
= (a, d) if b = c,

not defined if b 6= c.

By introducing a parameter t ∈ [0, 1], we let the pair (a(t), b(t)) converge to
a tangent vector. Provided that a(0) = b(0) = m we have

v = lim
t→0

a(t)− b(t)

t
∈ TmM.

This defines a topology on the groupoid that is the union

TM ∪M ×M × (0, 1].

As Connes shows, the tangent groupoid can be equipped with a natural
smooth structure. (See [4], II.5).

Connes’ construction is of interest to Beläıche because it provides an in-
tuitive construction of addition of tangent vectors (i.e., the group structure
on the tangent space TM) as the limit t → 0 of the groupoid of pairs
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M × M . Beläıche does not believe that a similar construction could ex-
plain the nilpotent group structures arising in sub-Riemannian geometry.
However, as we will see in the final section of this paper, there is a natural
modification of Connes’ tangent groupoid that is appropriate for the Heisen-
berg calculus (in section 5), and that exhibits the nilpotent group structure
of sub-Riemannian geometry as a limit of the pair groupoid M ×M . Our
construction of this groupoid relies on the correct notion of ‘osculating’ ex-
ponential maps.

1.5. Overview of the paper. In section 2 we define a new kind of ‘tangent
vector’—or, rather, a generalization of tangent vectors appropriate for the
definition of osculating groups. We call these new objects ‘parabolic arrows’.
Like a tangent vector, a parabolic arrow is an infinitesimal approximation
of a smooth curve near a point. While tangent vectors are defined by means
of first order derivatives, parabolic arrows involve a mix of first and second
order derivatives.

As we will see in section 2, parabolic arrows can be composed in a natural
way by extending them to local flows, which compose in the obvious way.
It is similar to the way ordinary tangent vectors could be added (by compo-
sition of flows), but the appearance of second order derivatives significantly
complicates the picture. In particular, composition of parabolic arrows is
noncommutative.

Parabolic arrows at a point m ∈ M are shown to form a nilpotent Lie
group, and the Lie algebra gm = Hm ⊕ Nm (defined by taking brackets of
vector fields) is shown to be its Lie algebra. Thus, parabolic arrows are
a geometric realization of elements in the osculating group, defined with
reference to the geometry of curves and flows, instead of the usual definition
via the Lie algebra of vector fields.

Algebraically, the osculating group structure arises from automorphisms
of the algebra C∞(M) (realized as diffeomorphisms ofM) while the Lie alge-
bra structure is derived from derivations of C∞(M) (vector fields). In section
3 we show that the formalism of jets of smooth maps R → Aut (C∞(M))
(representing flows) allows us to reformulate in a perhaps more conceptual
way the definition of parabolic flows and parabolic arrows. At the same
time, the jet formalism gives an easy generalization to the case of a filtra-
tion H1 ⊆ H2 ⊆ ... ⊆ TM of subbundles of the tangent bundle, giving rise
to several step nilpotent groups.

Armed with new geometric insight in the nature of the osculating group
elements and their composition, we introduce in section 4 the appropriate
notion of an exponential map for the fiber bundle of parabolic arrows. Be-
cause parabolic arrows are related to curves on the manifold, the group of
parabolic arrows has a built-in relation to the manifold. Because of this
connection a definition of ‘osculating’ exponential map for parabolic arrows
suggests itself naturally. To show the effectiveness of our definition, we an-
alyze the osculating structures of Folland and Stein for CR manifolds and
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of Beals and Greiner for Heisenberg manifolds, and we derive the explicit
coordinate formulas used by these analysts from our geometric concepts.

Finally, in section 5 we will see that our construction of the osculating
groups blends perfectly with the tangent groupoid formalism. We employ
parabolic arrows and osculating exponential maps to construct a tangent
groupoid for the Heisenberg calculus. We constructed such a groupoid for
the special case of contact manifolds in [11], making use of Darboux’s the-
orem. In section 5 we will show how parabolic arrows and osculating expo-
nential maps make the construction of a tangent groupoid for the Heisenberg
calculus a straightforward generalization of Connes’ construction. (Our con-
struction here applies in the case of an arbitrary distribution H ⊆ TM . In
the special case of Heisenberg manifolds an alternative construction of this
groupoid was given by Raphael Ponge in [8].)

1.6. Simplified picture of the Heisenberg calculus. To conclude this
introduction, we sketch a simplified picture of the Heisenberg pseudodiffer-
ential calculus (and its generalizations) by means of the geometric concepts
developed here.

Starting with a distribution H ⊆ TM we have a filtration of the Lie
algebra Γ(TM) of vector fields on M , where sections in H are given order
1 and all other sections in TM have order 2. The associated graded Lie
algebra can be identified with sections in the bundle of two-step graded Lie
algebras H ⊕N , whose construction was explained above. Let THM denote
the bundle of nilpotent Lie groups associated to H ⊕ N , which we identify
with the fiber bundle of parabolic arrows.

Choose an H-adapted (‘osculating’) exponential map

exp∇ : THM →M.

Extend this map to a local diffeomorphism near the zero section in THM ,

h : THM →M ×M : (m, v) 7→ (exp∇m(v),m)

By means of the map h we pull back the Schwartz kernel k(m,m′) of a
continuous linear operator C∞(M) → C∞(M) to the bundle of osculating
groups THM . We obtain a smooth family km(v) = k(h(m, v)) of distribu-
tions on the nilpotent osculating groups THMm parametrized by m ∈M . If
the operator associated to k is pseudolocal, then each distribution km has
an isolated singularity at the origin of the group THMm. An operator with
Schwartz kernel k is in the calculus if each distribution km has an asymptotic
expansion (in homogeneous terms) on the nilpotent groups THMm.

Precise details this approach to the generalized Heisenberg calculus are
developed in a forthcoming publication [13]. The crucial simplification comes
from the use of H-adapted (or ‘osculating’) exponential maps introduced in
this paper.

Remark. For simplicity of exposition, we focus in this paper on the geom-
etry of osculating groups for manifolds equipped with a single distribution
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H ⊆ TM . But the Heisenberg calculus has been generalized to arbitrary
filtered manifolds. A filtered manifold is a manifold with a nested sequence
of distributions

H1 ⊆ H2 ⊆ · · · ⊆ Hr = TM,

where it is required that the sections in these bundles form a filtration on
the Lie algebra of vector fields, i.e.,

[Γ(Hi),Γ(Hj)] ⊆ Γ(Hi+j).

In [5] Cummins develops the details of such a calculus for the case r = 3,
modeled on three-step nilpotent groups. In an unpublished preprint of 1982
[7], Anders Melin develops a generalized Heisenberg calculus for arbitrary
filtered manifolds, modeled on graded nilpotent groups of arbirary length.
Section 3 below constructs the group of generalized parabolic arrows that
is suitable for this situation. It will be shown in [13] how the geometric
concepts developed in the current paper simplify the results of Melin.

2. Parabolic Arrows and Their Composition.

2.1. Parabolic arrows. Throughout this and the following sections, M
denotes a smooth manifold with a specified distribution H ⊆ TM . We will
write N = TM/H for the quotient bundle, and denote the fiber dimensions
by p = dimH, q = dimN , and n = p + q = dimM . We will not assume
that q = 1.

When studying a Heisenberg structure (M,H) it is convenient to work
with a special type of coordinates.

Definition 1. Let m be a point on M , and U ⊆ M an open set in M
containing m. A coordinate chart φ : U → R

n, φ(m′) = (x1, . . . , xn) is
called an H-coordinate chart at m, if φ(m) = 0, and the first p coordinate
vectors ∂/∂xi (i = 1, . . . , p) at the point m span the fiber Hm of H at m.

Tangent vectors can be defined as equivalence classes of smooth curves.
By analogy, we introduce an equivalence relation involving second-order
derivatives.

Definition 2. Let c1, c2 : [−1, 1] →M be two smooth curves that are tangent
to H at t = 0. For such curves we say that c1∼Hc2 if c1(0) = c2(0) and if,
choosing H-coordinates centered at c1(0) = c2(0), we have

c′1(0)− c′2(0) = 0,

c′′1(0)− c′′2(0) ∈ H.
An equivalence class [c]H is called a parabolic arrow at the point c(0). The
set of parabolic arrows at m ∈M is denoted THMm, while

THM =
⋃

m∈M

THMm.

7



We can give THM the topology induced by the C2-topology on the set of
curves, but for the moment we just think of THM as a set.

Lemma 3. The equivalence relation ∼H is well-defined, i.e., independent
of the choice of the H-coordinates.

Proof. The condition that c′1(0) = c′2(0) is clearly invariant. We will show
that, assuming c′1(0) = c′2(0), the condition c

′′
1(0)− c′′2(0) ∈ H on the second

derivatives is independent of the choice of H-coordinates.
If ψ is a change of H-coordinates, then:

d2(ψ ◦ c)
dt2

=
d

dt



∑

j

∂ψ

∂xj
(c(t))

dcj

dt




=
∑

j,k

∂2ψ

∂xj∂xk
(c(t))

dcj

dt

dck

dt
+
∑

j

∂ψ

∂xj
(c(t))

d2cj

dt2
.

At t = 0 we assumed dc1/dt = dc2/dt, so that the first term on the right
hand side is equal for ψ ◦ c1 and ψ ◦ c2 (at t = 0). Therefore:

(ψ ◦ c1)′′(0)− (ψ ◦ c2)′′(0) =
∂ψ

∂x
(m) ·

(
c′′1(0) − c′′2(0)

)
.

Since ψ is a change of H-coordinates at m, ∂ψ/∂x preserves Hm, so that
c′′1(0) − c′′2(0) ∈ Hm implies (ψ ◦ c1)′′(0)− (ψ ◦ c2)′′(0) ∈ Hm.

�

If we fix H-coordinates at m ∈M , and consider the second-order expan-
sion (in coordinates) of a curve c with c(0) = m,

c(t) = c′(0) t+
1

2
c′′(0) t2 +O(t3),

we see that any such curve is equivalent, as a parabolic arrow, to a curve c̃
of the form

c̃(t) = (th, t2n) = (th1, . . . , thp, t
2n1, . . . , t

2nq).

This observation forms the basis for the following definition.

Definition 4. Suppose we are given H-coordinates at m ∈ M . Let h ∈
R
p, n ∈ R

q, and let c(t) be the curve in M defined (in H-coordinates) by

c(t) = (th, t2n).

We call (h, n) = (h1, . . . hp, n1, . . . , nq) ∈ R
p+q the Taylor coordinates for

the parabolic arrow [c]H ∈ THMm, induced by the given H-coordinates at m,

Fm : R
p+q → THMm : (h, n) 7→ [c]H .

This is analogous to the way in which coordinates on the tangent space
TmM are induced by coordinates on M , with the important difference that
Taylor coordinates on THMm are defined for only one fiber (i.e., one point
m ∈M) at a time.
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Analogous to the directed line segments that represent tangent vectors,
a pictorial representation for the class [c]H would be a directed segment of
a parabola. Hence our name ‘parabolic arrow.’ Parabolic arrows are what
smooth curves look like infinitesimally, when we blow up the manifold using
the dilations (h, n) 7→ (th, t2n), and let t→ ∞.

When working with H-coordinates φ(m) = x ∈ R
n, we use the notation

x = (xH , xN ) ∈ R
p+q, where

xH = (x1, . . . , xp) ∈ R
p, xN = (xp+1, . . . , xp+q) ∈ R

q.

Lemma 5. If ψ is a change of H-coordinates at m, then the induced change
of Taylor coordinates ψ(h, n) = (h′, n′) for a given parabolic vector in THMm

is given by the quadratic formula:

h′ = Dψ(h),

n′ = [Dψ(n) +D2ψ(h, h)]N ,

where [v]N denotes the normal component of the vector v = (vH , vN ) ∈ R
p+q.

Proof. This is just the formula for (ψ ◦ c)′′(0) from the proof of Lemma 3.
�

Corollary 6. The smooth structures on the set of parabolic arrows THMm

at a point m ∈ M defined by different Taylor coordinates are compatible,
i.e., THMm has a natural structure of a smooth manifold.

It is clear from Lemma 5 that Taylor coordinates define a structure on
THMm that is more than just a smooth structure. This will be fully clari-
fied when we introduce the group structure on THMm, but part of this ex-
tra structure is captured if we consider how parabolic arrows behave when
rescaled.

Definition 7. The family of dilations δs, s > 0, on the space of parabolic
arrows THMm is defined by

δs([c]H) = [cs]H ,

where [c]H is a parabolic arrow in THMm represented by the curve c(t), and
cs denotes the reparametrized curve cs(t) = c(st).

When working in Taylor coordinates [c]H = (h, n), we simply have

δs(h, n) = (sh, s2n).

Clearly, these dilations are smooth maps and δst = δs ◦ δt.
Considering Taylor coordinates on THMm, it is tempting to identify par-

abolic arrows with vectors in H ⊕ N . Lemma 5 shows that such an iden-
tification is not invariant if we use Taylor coordinates to define it. But we
have at least the following result.

Lemma 8. There is a natural identification

T0(THMm) ∼= Hm ⊕Nm
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of the tangent space T0(THMm) at the ‘origin’ (i.e., at the equivalence class
[0]H of the constant curve at m) with the vector space Hm ⊕ Nm. It is
obtained by identifying the coordinates on T0(THMm) induced by Taylor co-
ordinates on THMm, with the natural coordinates on Hm ⊕Nm.

Proof. From Lemma 5, we see that Taylor coordinates on T0(THMm) trans-
form according to the formula

h′ = Dψ(h), n′ = Dψ(n)N ,

because the quadratic term D2ψ(h, h) has derivative 0 at 0. This is pre-
cisely how the induced coordinates on Hm ⊕ Nm behave under coordinate
transformation ψ.

�

2.2. Composition of parabolic arrows. We will now show that the man-
ifold THMm has the structure of a Lie group. Our method is based on com-
position of local flows of M . By a flow Φ of M we mean a diffeomorphism
Φ: M × R → M , such that m 7→ Φt(m) = Φ(m, t) is a diffeomorphism for
each t ∈ R, while Φ0(m) = m. A local flow is only defined on an open subset
V ⊆M × R. Two flows Φ,Ψ can be composed:

(Φ ◦Ψ)(m, t) = Φ(Ψ(m, t), t).

Using the notation Φt for the local diffeomorphism Φt(m) = Φ(m, t), we can
write (Φ ◦Ψ)t = Φt ◦Ψt.

A (local) flow is said to be generated by the vector field X ∈ Γ(TM), if

∂Φ

∂t
(m, t) = X(m).

However, we are specifically interested in flows for which the generating
vector fieldXt(m) = ∂Φ

∂t
(m, t) is not constant, but depends on t. We will only

require thatX0 is a section inH, but we will allow Xt to pick up a component
in the N -direction. This is because we are not primarily interested in the
tangent vectors to the flow lines cm(t) = Φ(m, t), but in the parabolic arrows
that they define.

We start with a formula that gives a quadratic approximation (in t) for
the composition of two arbitrary flows.

Lemma 9. Let ΦX ,ΦY be two flows in R
n that are defined near the origin,

and let X and Y be their generating vector fields at t = 0:

X(x) = (∂tΦ
X)(x, 0), and Y (x) = (∂tΦ

Y )(x, 0).

Then the composition of ΦX and ΦY has the following second-order approx-
imation,

(ΦX
t ◦ ΦY

t )(0) = ΦX
t (0) + ΦY

t (0) + t2 (∇YX)(0) +O(t3),

where ∇ denotes the standard connection on TRn.

Remark. Observe that X = ∂tΦ
X is required only at t = 0!
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Proof. Write F (r, s) = ΦX
r (ΦY

s (0)). The Taylor series for F gives

F (t, t) = t ∂rF (0, 0) + t2∂s∂rF (0, 0) + t ∂sF (0, 0) +
1

2
t2∂2rF (0, 0)

+
1

2
t2∂2sF (0, 0) +O(t3)

= F (t, 0) + F (0, t) + t2∂s∂rF (0, 0) +O(t3),

or

ΦX
t ΦY

t (0) = ΦX
t (0) + ΦY

t (0) + t2 ∂s∂rΦ
X
r ΦY

s (0)
∣∣
r=s=0

+O(t3).

At r=0 we have ∂rΦ
X
r = X, so:

∂s∂rΦ
X
r (ΦY

s (0))
∣∣
r=0

= ∂s
(
X(ΦY

s (0))
)
.

Here X(ΦY
s (0)) denotes the vector field X evaluated at the point ΦY

s (0),
which can be thought of as a point on the curve s 7→ ΦY

s (0). The operator
∂s is applied to the components of this vector, and the chain rule gives

∂sX(ΦY
s (0))

∣∣
s=0

=

p∑

i=1

∂iX(0) · ∂sΦY
s (0)

i
∣∣
s=0

=

p∑

i=1

(∂iX)(0) Y i(0) = (∇YX)(0)

�

We are interested in flows Φ for which the flow lines Φm(t) = Φ(m, t)
define parabolic arrows. Hence the following definition.

Definition 10. A parabolic flow of (M,H) is a local flow Φ: V →M (with
V an open subset in M ×R) whose generating vector field at t = 0,

∂Φ

∂t
(m, 0)

(defined at each point m for which (m, 0) ∈ V ) is a section of H.

Given a parabolic flow Φ, each of the flow lines Φm is tangent to H at
t = 0, and so determines a parabolic arrow [Φm]H at each m ∈ M (with
(m, 0) ∈ V ). Once we have defined the smooth structure on THM it will
become clear that m 7→ Φm is a smooth section of the bundle THM . It is
an analogue of the notion of a generating vector field, but it is only defined
at t = 0.

We now show how composition of parabolic flows induces a group struc-
ture on the fibers of THM .

Proposition 11. Let Φ,Ψ be two parabolic flows. Then the composition
(Φ ◦ Ψ)t = Φt ◦ Ψt (defined on an appropriate domain) is also a parabolic
flow, and the parabolic vector [(Φ ◦ Ψ)m]H at a point m ∈ M only depends
on the parabolic vectors [Φm]H and [Ψm]H at the same point.
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Proof. Let ∇ denote the standard local connection on TM induced by the
H-coordinates at m. Because ∇fY (gX) = fg∇Y (X)+f(Y.g)X, we see that
the operation

Γ∞(H)⊗ Γ∞(H) → Γ∞(N) : (X,Y ) 7→ [∇YX]N

is C∞(M)-bilinear. In other words, the N -component of ∇YX at the point
m ∈ M only depends on the values X(m) and Y (m) at m. We denote this
N -component by ∇N :

∇N : Hm ⊗Hm → Nm,

∇N (X(m), Y (m)) = [∇YX]N (m).

Lemma 9 implies:

ΦtΨt(0)
H = Φt(0)

H +Ψt(0)
H +O(t2),

ΦtΨt(0)
N = Φt(0)

N +Ψt(0)
N + t2∇N (X(0), Y (0)) +O(t3).

Writing

Φt(0)
H = th+O(t2), Φt(0)

N = t2n+O(t3),

Ψt(0)
H = th′ +O(t2), Ψt(0)

N = t2n′ +O(t3),

this becomes

ΦtΨt(0)
H = t(h+ h′) +O(t2),

ΦtΨt(0)
N = t2

(
n+ n′ +∇N (h, h′)

)
+O(t3).

The proposition is a direct corollary of these formulas.
�

It is clear from Proposition 11 that composition of parabolic flows induces
a group structure on the set THMm, for each m ∈M , analogous to addition
of tangent vectors in TmM . To see that THMm is actually a Lie group, we
use the explicit formulas obtained in the proof of Proposition 11 .

Proposition 12. Let Φ,Ψ be two parabolic flows. Given H-coordinates at
m, let Xi ∈ Γ(H) (i = 1, . . . , p) be local sections in H that extend the coor-
dinate tangent vectors ∂i at m. Let X l

i (l = 1, . . . , n) denote the coefficients
of the vector field Xi, i.e.,

Xi =
∑

X l
i∂l.

Let (bkij) be the array of constants

bkij = ∂jX
p+k
i (m)

for i, j = 1, . . . , p and k = 1 . . . , q. It represents a bilinear map b : Rp×R
p →

R
q via

b(v,w)k =

p∑

i,j=1

bkijv
iwj ,

12



with k = 1, . . . , q.
If (h, n) and (h′, n′) are the Taylor coordinates of [Φm]q and [Ψm]q, re-

spectively, then the Taylor coordinates (h′′, n′′) of [(Φ ◦Ψ)m]q are given by

h′′ = h+ h′,

n′′ = n+ n′ + b(h, h′).

Proof. This is a direct corollary of the formulas in the proof of Proposition
11. Simply observe that

b(∂i, ∂j)
k = ∂jX

p+k
i (m) = [∇Xj

Xi]
p+k(m) = ∇(∂i, ∂j)

p+k,

which implies that b(v,w) = ∇N (v,w).
�

Corollary 13. The operation

[Φm]H ∗ [Ψm]H = [(Φ ◦Ψ)m]H

defines the structure of a Lie group on THMm.

The groups THMm are the osculating groups associated to the distribu-
tion (M,H). Note that, although the value of the array (bkij) in Proposition
12 depends on the choice of coordinates, our definition of the group ele-
ments (parabolic vectors) as well as their composition is clearly coordinate-
independent. Furthermore, it is important to notice that the values of bkij
do not depend on the choice of vector fields Xi, but only on the choice of
coordinates.

Beals and Greiner defined the osculating groups by means of the formulas
we have derived in Proposition 12 (see [1], chapter 1). Note that in their
treatment q = 1, so that the k-index in the array bkij is missing. The oscu-
lating group itself was simply identified with the coordinate space R

n, and
its status as an independent geometric object was left obscure.

Proposition 14. The natural dilations δs of the osculating groups THMm,
induced by reparametrization of curves, are Lie group automorphisms.

Proof. That the dilations are group automorphisms follows immediately
from the geometric definition of the group operation on THMm in Corollary
13 (by reparametrizing the flows). Alternatively, using Taylor coordinates
we have δs(h, n) = (sh, s2n), which is clearly a smooth automorphism for
the group operation

(h, n, ) ∗ (h′, n′) = (h+ h′, n+ n′ + b(h, h′)).

�

The construction of the osculating bundle THM is functorial for (local)
diffeomorphisms. Given a diffeomorphism of manifolds with distribution,

φ : (M,H) → (M ′,H ′),
13



such that Dφ : H → H ′, we could define the parabolic derivative THφ of φ
as the map

THφ : THM → THM
′ : [c]H 7→ [φ ◦ c]H ,

where c(t) is a curve in M representing a parabolic arrow [c]H ∈ THMm.
A straightforward calculation, similar to the proof of Lemma 3, shows that
this is a well-defined map (independent of the choice of the curve c), and
functoriality is obvious, i.e.,

TH(φ ◦ φ′) = THφ ◦ THφ′.
Clearly, if φ is a diffeomorphism, then THφ is a group isomorphism in each
fiber.

2.3. The Lie algebras of the osculating groups. According to Lemma
8, we may identify the Lie algebra Lie (THMm) as a vector space with Hm⊕
Nm. In the introduction we defined a Lie algebra structure on Hm ⊕ Nm,
and we now show that it is compatible with the group structure on THMm.
We make use of some general results on two-step nilpotent groups that are
discussed in the appendix.

Proposition 15. Let X and Y be two (local) sections of H. Then the value
of the normal component [X,Y ]N (m) of the bracket [X,Y ] at the point m
only depends on the values of X and Y at the point m.

The Lie algebra structure on LieTHMm
∼= Hm ⊕Nm is given by

[(h, n), (h′, n′)] =
(
0, [X,Y ]N (m)

)
,

where X,Y ∈ Γ(H) are arbitrary vector fields with X(m) = h, Y (m) = h′.

Proof. This is a straightforward application of Lemma 25 to the group struc-
ture on THMm as described in Proposition 11. We have

b(h′, h) − b(h, h′) = (∇XY −∇YX)N (m) = [X,Y ]N (m).

We have already shown that b(h, h′) = (∇YX)N (m) only depends on h =
X(m) and h′ = Y (m).

�

We are now in a position to define the smooth structure on the total space

THM =
⋃
THMm.

There is a natural bijection

exp : Hm ⊕Nm → THMm,

namely the exponential map from the Lie algebra Hm⊕Nm to the Lie group
THMm. We give the total space THM the smooth structure that it derives
from its identification with H ⊕N .

Lemma 16. The smooth structure on THM , obtained by the fiberwise iden-
tification with H ⊕ N via exponential maps, is compatible with the Taylor
coordinates on each THMm, for any choice of H-coordinates at m.

14



Proof. ChoosingH-coordinates atm, we get linear coordinates on Hm⊕Nm.
Taking these coordinates and Taylor coordinates on THMm, we have iden-
tified LieTHMm

∼= Hm⊕Nm. According to Proposition 24, the exponential
map Hm ⊕Nm → THMm is expressed in these coordinates as

exp(h, n) = (h, n+
1

2
b(h, h)),

which is clearly a diffeomorphism.
�

The natural decomposition Lie (THMm) = Hm⊕Nm defines a Lie algebra
grading, with g1 = Hm of degree 1 and g2 = Nm of degree 2. Corresponding
to the grading we have dilations δt(h, n) = (th, t2n), and these dilations are
Lie algebra automorphisms. The dilations of the osculating group THMm

induced by reparametrization of curves and the dilations of the graded Lie
algebra Hm ⊕Nm are related via the exponential map (see Proposition 24):

exp(δt(h, n)) = exp(th, t2n) = (th, t2n+
1

2
b(th, th))

= δt(h, n +
1

2
b(h, h)) = δt exp(h, n)

It will be useful to characterize the parabolic arrows whose logarithms are
vectors in H.

Proposition 17. If c : R → M is a curve such that c′(t) ∈ H for all t ∈
(−ε, ε), then the parabolic arrow [c]H ∈ THMm is the exponential of the
tangent vector c′(0) ∈ Hm, considered as an element in the Lie algebra of
THMm. Here m = c(0).

Proof. Choose H-coordinates at m = c(0), and let (h, n) ∈ R
p+q be the

corresponding Taylor coordinates of the parabolic arrow [c]H . Because
c′(t) ∈ H for t near 0, we can choose an H-frame X1, . . . ,Xn in a neighbor-
hood U of m in such a way that c′(t) =

∑
hiXi(c(t)) at every point c(t) ∈ U .

With this set up, we compute the second derivative:

d2c

dt2
=

d

dt
(
∑

i

hiXi)◦c =
∑

j

∂

∂xj

(
∑

i

hiXi

)
dcj
dt

=
∑

i,j

hi
∂Xj

∂xi

dcj
dt
.

Then, at t = 0, the normal component of c′′(0) is given by,

c′′(0)N =
∑

i,j

∂iX
N
j hihj = b(h, h),

where b(h, h) is defined as in Proposition 12. It follows that the Taylor
coordinates of [c]H are (h, 12b(h, h)), and therefore, by Proposition 24,

log([c]H) = (h, 0).

�
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3. A jet point of view on the osculating group

In this section we want to introduce a more conceptual point of view
on parabolic flows, considered as maps from the real line to the group of
diffeomorphisms of the manifold M . The construction of the Hesenberg
tangent group THM involves the 2-jets of such maps. In order to allow
generalization to the case of filtrations H1 ⊂ H2 ⊂ ... ⊂ TM , we shall
consider jets of all orders. For the convenience of the reader, we will at first
replace the group of diffeomorphisms of M by a Lie group G.

3.1. Jets with values in a Lie group. Let G be a Lie group and g be
its Lie algebra. We denote by U(g) the universal enveloping algebra of g.
Recall that U(g) is also a bialgebra with coproduct

∆ : U(g) 7→ U(g)⊗ U(g)

satisfying ∆(X) = X ⊗ 1 + 1⊗X for any X ∈ g.
Let us define the group J∞G of jets as follows: We consider the group

of all C∞ maps from the real line R to G which map 0 to the identity of
the group G (with pointwise multiplication) and we quotient by the normal
subgroup consisting of maps having zero Taylor series, i.e. maps t 7→ g(t)
such that for any f ∈ C∞(G), the function t 7→ f(g(t)) has derivatives of
all orders vanishing at 0.

The jet of the map t 7→ g(t) is determined by the Taylor series of the
functions t 7→ f(g(t)) = f(1) + tT1f(1) + t2T2f(1) + ... + tkTkf(1) + ...
where Tk ∈ U(g) is the left invariant differential operator on G defined

by Tk(f)(1) = (f ◦ g)(k)(0)/k!, the k-th derivative at zero of the function
(f ◦ g)(t) = f(g(t)).

A jet in J∞G is therefore a formal power series jt = 1+ tT1 + t2T2 + ...+
tkTk + ... with coefficients Tk ∈ U(g). Moreover the elements Tk of U(g)
must satisfy the condition of being group-like elements: indeed the obvious
fact that (f1f2)(g(t)) = f1(g(t))f2(g(t)) implies that ∆(jt) = jt ⊗ jt, i.e.

∆(Tk) =
∑

i+j=k

Ti ⊗ Tj .

In particular, ∆(T1) = T1⊗1+1⊗T1, which means that T1 is an element
of g.

Conversely any formal series jt = 1 + tT1 + t2T2 + ... + tkTk + ... with
coefficients Tk ∈ U(g) satisfying the above conditions, is the jet of a smooth
map from the real line to G. This can be proved using the Lie algebra and
the exponnential map. The Lie algebra of J∞G is indeed he space j∞G of
series tX1+ t

2X2+ ...+ t
kXk+ ... with Xk ∈ g for all k ≥ 1. The exponential

map exp : j∞G → J∞G is easily checked to be bijective, and sends the Lie
algebra to the group-like elements.
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In particular the exponential map gives the solution to the equations
∆(Tk) =

∑
i+j=k Ti ⊗ Tj defining J∞G, namely

Tk =
k∑

l=1

1

l!

∑

k1+k2+...+kl=k

Xk1Xk2 ...Xkl

with X1,X2, ... is a sequence of elements of the Lie algebra g.

3.2. The filtrated case. Let us now assume that we are given a filtration
F of the Lie algebra g, i.e. a sequence of vector subspaces F1 ⊂ F2 ⊂
... ⊂ Fl ⊂ g such that [Fi, Fj ] ⊂ Fi+j . (Note that we define Fk = g for all
k ≥ l + 1.) As well known, to such a filtered Lie algebra one can associate
a graded Lie algebra:

gr(g, F ) = F1 ⊕ F2/F1 ⊕ F3/F2...⊕ g/Fl

with the obviously defined brackets [Fi/Fi−1, Fj/Fj−1] ⊂ Fi+j/Fi+j−1.
A simple and conceptual way of looking at the associated graded algebra

is as follows. Consider the Lie subalgebra j∞F G of j∞G, consisting of series

tX1 + t2X2 + ... + tkXk + ... with Xk ∈ Fk for all k ≥ 1. The Lie algebra
j∞F (G) has an obvious ideal, namely its image by multiplication by t: the

ideal i∞F G = tj∞F G is the set of series t2X1 + t3X2 + ... + tk+1Xk + ... with
Xk ∈ Fk for all k ≥ 1.

Then the quotient Lie algebra j∞F G/i
∞
F G is clearly isomorphic to the

graded Lie algebra gr(g, F ) = F1 ⊕ F2/F1 ⊕ ... ⊕ g/Fl associated to the
filtered algebra (g, F ).

The above formalism allows to give a simple interpretation of the Lie
group associated to the Lie algebra gr(g, F ). Indeed, the exponential maps
the Lie algebra j∞F G to a subgroup J∞

F G of J∞G, which is the set of jets

1 + tT1 + t2T2 + ...+ tkTk + ... where

Tk =

k∑

l=1

1

l!

∑

k1+k2+...+kl=k

Xk1Xk2 ...Xkl

with Xk ∈ Fk for all k ≥ 1. The image by the exponential of the ideal i∞F G
is a normal subgroup I∞F G of J∞

F G. The quotient group

J∞
F G/I∞F G

is a Lie group with Lie algebra j∞F G/i
∞
F G = gr(g, F ).

3.3. Jets of flows on a manifold. To deal with flows on a manifoldM , we
are interested in extending the above formalism to the case where G is the
group of diffeomorphisms of a manifold M ( in fact an infinite dimensional
Lie group). The associated Lie algebra g is the Lie algebra Γ(TM) of vector
fields on M (with the Lie bracket) and the enveloping algebra of g is the
algebra of differential operators on M (which map constants to constants,
i.e., whose zero order component is a constant). Note that g = Γ(TM) is not
only a Lie algebra but also a C∞(M) module, which is projective and of finite
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type, and compatible with the action of g on C∞(M) by derivations: for any
X,Y ∈ Γ(TM), f, g ∈ C∞(M), [fX, gY ] = fg[X,Y ] + fX(g)Y − gY (f)X.

The group J∞G is the group of jets of flows which are identity at t = 0.
An element of J∞G is a formal series jt = 1+tT1+t

2T2+...+t
kTk+... where

each Tk is a differential operator of order k, and satisfying the equations

∆(Tk) =
∑

i+j=k

Ti ⊗ Tj

which concretely means that for any smooth functions f1 and f2 on M

Tk(f1f2) =
∑

i+j=k

Ti(f1)Tj(f2).

The Lie algebra of J∞G is the space j∞G of series tX1+t
2X2+...+t

kXk+...
with Xk are vector fields for all k ≥ 1. The exponential map describes the
jets of flows as given by

Tk =

k∑

l=1

1

l!

∑

k1+k2+...+kl=k

Xk1Xk2 ...Xkl

with X1,X2, ... a sequence of vector fields. In other words a jet of flows is
given (via the exponential map) by coordinates which are vector fields X1,
X2,...

3.4. Jets of flows on a manifold equipped with a filtration of the

tangent bundle. Let us now consider a filtration F of the Lie algebra
of vector fields, i.e. F1 ⊂ F2 ⊂ ... ⊂ Fl ⊂ g satisfying the following two
conditions:

1) Fj is a sub-C∞(M)-module of the module of sections of the tangent
bundle TM ;

2) [Fi, Fj ] ⊂ Fi+j (with Fk consists of all vector fields for all i ≥ l + 1).
The first condition says that the filtration is defined pointwise on each

fibers. For simplicity we shall restrict ourselves to the case where Fj = Γ(Hj)
is the module of sections of a subbundle Hj of TM with H1 ⊂ H2 ⊂ ... ⊂
Hl ⊂ TM is a filtration of the tangent space subject to the conditions
[Γ(Fi),Γ(Fj)] ⊂ Γ(Fi+j). But more general cases are allowed. The second
condition is meaningless in the case where l = 1, i.e., for a single subbundle
H ⊂ TM . But for l ≥ 2 the pointwise filtration is not enough and a
condition on the brackets of vector field is needed.

As is well known, to such a filtration is associated a graded Lie algebra

gr(g, F ) = F1 ⊕ F2/F1 ⊕ F3/F2...⊕ g/Fl

with brackets [Fi/Fi−1, Fj/Fj−1] ⊂ Fi+j/Fi+j−1. An important fact is that
the above graded Lie algebra is a bundle equipped with a Lie algebra struc-
ture. Indeed, each quotient Fj/Fj−1 is a C

∞(M)-module and the Lie bracket
18



Fi/Fi−1×Fj/Fj−1 → Fi+j/Fi+j−1 is C
∞(M) bilinear, as easily checcked us-

ing the formula [fX, gY ] = fg[X,Y ] + fX(g)Y − gY (f)X. This shows that
each fiberH1⊕H2/H1⊕...⊕TM/Hl is equipped with a Lie algebra structure.

As above, we can associate to such a filtration a Lie subalgebra of j∞(G),
namely the set j∞F G of series tX1 + t2X2 + ...+ tkXk + ... with Xk ∈ Fk for
all k ≥ 1. The associate infinite dimensional Lie group J∞

F G is the group of

jets of flows 1 + tT1 + t2T2 + ...+ tkTk + ... which are of the form

Tk =
k∑

l=1

1

l!

∑

k1+k2+...+kl=k

Xk1Xk2 ...Xkl

with Xk ∈ Fk for all k ≥ 1.
The Lie algebra j∞F G has an ideal i∞F G = tj∞F G, consisting of series t2X1+

t3X2 + ... + tk+1Xk + ... with Xk ∈ Fk for all k ≥ 1. The quotient Lie
algebra j∞F G/i

∞
F G is the above considered graded Lie algebra gr(g, F ) =

F1 ⊕ F2/F1 ⊕ ...⊕ g/Fl associated to the filtered algebra (g, F ).
We propose to call the elements of J∞

F G jets of generalized parabolic flows.
The quotient group J∞

F G/I∞F G is the quotient of the group of generalized
parabolic flows by the normal subgroup consisting of flows as above with
X1 = 0 and Xj ∈ Fj−1. The fiber at point x ∈ M is the quotient of the
group of generalized parabolic flows by the normal subgroup consisting of
flows such that X1 = 0 and Xj ∈ Fj−1 at point x. It might be called the
group of generalized parabolic arrows at point x ∈M .

3.5. Back to the special case of one single subbundle. Let us now
explain how in the case of a filtration H ⊂ TM by a single subbundle, we
recover the above definition of parabolic flows. The condition for a jet of
flow jt = 1+ tT1+ t

2T2+ ...+ t
kTk+ ... to be in the subgroup J∞

F G is simply
that T1 = X1 ∈ Γ(H). This is what we called a (jet of) parabolic flow. A

parabolic flow is given by a 2-jet exp(tX + t2Y ) = 1 + tX + t2

2 (X
2 + 2Y )

where X is a section of H and Y any vector field. The product of two such

flows (1+tX1+
t2

2 (X
2
1 +2Y1))(1+tX2+

t2

2 (X
2
2 +2Y2)) is calculated as follows

(with the rule t3 = 0) being

1 + t(X1 +X2) +
t2

2
(X2

1 +X2
2 + 2X1X2 + 2Y1 + 2Y2)

which is the same as:

1 + t(X1 +X2) +
t2

2
((X1 +X2)

2 + 2(Y1 + Y2 +
1

2
[X1,X2]))

Now the subgroup of parabolic jets of the form exp(t2Y ) = 1+ t2

2 Y where
Y is a section of H is normal, and the quotient is clearly the Heisenberg
tangent group THM = H ⊕ TM/H.
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4. H-adapted Exponential Maps.

4.1. Exponential maps for parabolic arrows. We now come to the def-
inition of exponential map that is suitable for the fiber bundle of parabolic
arrows. We will see that such an exponential map is equivalent to what
analysts mean by an osculating structure. Our Definition 19 of H-adapted
exponential maps clarifies the intrinsic geometry behind the explicit coordi-
nate formulas for osculating structures proposed by analysts.

Before introducing our notion of H-adapted exponential map, let us first
state exactly what we mean by ‘exponential map’.

Definition 18. An exponential map is a smooth map

exp: TM →M

whose restriction expm : TmM →M to a fiber TmM maps 0 7→ m, while the
derivative D expm at the origin 0 ∈ TmM is the identity map T0(TmM) =
TmM → TmM .

A more specialized notion of ‘exponential map’ associates it to a connec-
tion ∇ on TM . For a vector v ∈ TmM one can define exp∇m(v) to be the
end point c(1) of the unique curve c(t) that satisfies

c(0) = m, c′(0) = v, ∇c′(t)c
′(t) = 0.

Such a map certainly satisfies the property of Definition 18. One could
specialize further and let ∇ be the Levi-Civita connection for a Riemannian
metric on M , in which case the curve c will be a geodesic. But the looser
Definition 18 suffices for the purpose of defining a pseudodifferential calculus
on M . Given such an exponential map, we can form a diffeomorphism h in
a neighborhood of the zero section M ⊂ TM ,

h : TM →M ×M : (m, v) 7→ (expm(v),m).

Given the Schwartz kernel k(m,m′) of a linear operator C∞(M) → D(M),
we can pull it back to a distribution on TM by means of the map h. The
singularities of the pullback k ◦ h reside on the zero section M ∈ TM . The
classical pseudodifferential calculus is obtained by specifying the asymptotic
expansion of k ◦ h near the zero section. In order to develop the Heisenberg
pseudodifferential calculus in an analogous manner we must identify the
natural notion of exponential map for the fiber bundle THM of parabolic
arrows. Our geometric insight in the group structure of THM leads to a
natural definition. Observe that Definition 18 is equivalent to the condition
that each curve c(t) = expm(tv) has tangent vector c′(0) = v at point
m = c(0). This immediately suggests the following generalization.

Definition 19. Let M be a manifold with distribution H ⊂ TM . An H-
adapted exponential map for (M,H) is a smooth map

exp : THM →M,
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such that for each parabolic arrow v ∈ THMm the curve c(t) = expm(δtv) in
M represents the parabolic arrow v, i.e., [c]H = v in THMm.

If we choose a section j : N →֒ TM we may identify H ⊕ N with the
tangent bundle TM . The composition

THM
log−→ H ⊕N

j−→ TM,

then identifies THM , as a smooth fiber bundle, with TM . Every H-adapted
exponential map is identified, in this way, with an ordinary exponential map
exp: TM →M . However, not every exponential map TM →M induces an
H-adapted exponential map. Definition 18 involves only the first derivative
of the map. But in order to be H-adapted, an exponential map must satisfy
a further requirement on its second derivative. Definition 19 provides a
natural geometric way to encode this rather delicate second order condition,
by means of our notion of parabolic arrows.

The key property that makes an arbitrary exponential map H-adapted
can be stripped down to the condition that every curve c(t) = exp(th), for
every h ∈ Hm, represents the parabolic arrow [c]H = h ∈ Hm. This, in turn,
is equivalent to the requirement that there exists a second curve c2(t) that
is everywhere tangent to H and such that c′2(0) = c′(0) and such that c′′2(0)
agrees with c′′(0) in the directions transversally to Hm (Proposition 17). We
are not sure if this makes things any clearer, but it does bring out, to some
extent, the geometric meaning of H-adaptedness. The point is that, while
the bundle H may not be integrable, one still wants the exponential map
to be such that rays in H are mapped to curves in M that ‘osculate’ the
bundle H as closely as possible, as measured by the second derivative in the
transversal direction.

4.2. H-adapted exponential maps and connections. Further geomet-
ric insight in the distinctive features of H-adapted exponential maps is ob-
tained if we consider exponential maps that arise from connections. This
consideration is also useful because it implies the existence of H-adapted
exponential maps.

Observe that the choice of a distribution H ⊆ TM is equivalent to a
reduction of the principal frame bundle fTM to the subbundle fTHM ,
whose fiber at m ∈ M consists of frames (e1, . . . , en) in TmM for which
(e1, . . . , ep) is a frame in Hm. (A local section of fTHM is what we have
called an H-frame.) The fiber bundle fTHM is a principal bundle with
structure group,

G = {
(
A B
0 C

)
∈ End (Rp ⊕ R

q)} ⊆ GLp+q(R).

In other words, a Heisenberg structure on M is equivalent to a G-structure
on TM , and the natural connections to consider are connections on the
principal G-bundle fTHM . For the associated affine connection ∇ on TM ,
this simply means that if X ∈ Γ(H), then ∇YX ∈ Γ(H), in other words,
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∇ is a connection on TM that can be restricted to a connection on H.
One easily verifies that this last condition implies that the exponential map
exp∇ : TM →M is H-adapted. We abuse the notation exp∇ for the induced
exponential map on parabolic arrows,

exp∇ : THM →M,

even though this also involves choosing an explicit section j : N → TM . In
practice one may choose to work only with H-adapted exponential maps
induced by G-connections. This approach has the advantage that it does
not require the notion of parabolic arrows. However, it is insufficient to
encompass the exisiting definitions of osculating structures found in the
literature. We will see, for example, that the osculating structures of Beals
and Greiner, while they do arise from H-adapted exponential maps, do not
arise from G-connections.

4.3. H-adapted exponential maps from H-coordinates. A second method
for constructing H-adapted exponential maps is by means of a smooth sys-
tem of H-coordinates. A smooth system of H-coordinates is a choice of
H-coordinates

Em : R
n →M,

at each pointm ∈M , in such a way that the map (m,x) 7→ Em(x) is smooth.
Observe that, in general, such a smooth system will only exist locally, and
the exponential maps defined by means of such a system of coordinates are
likewise only locally defined. Such a local definition suffices for the purpose
of specifying the Heisenberg calculus.

Let

Fm : R
n → THMm

denote the Taylor coordinates induced by the H-coordinates Em. It is im-
mediately clear from the definition of Taylor coordinates (Definition 4) that
the composition

expm = Em ◦ F−1
m : THMm →M

is an H-adapted exponential map.
This particular way of obtaining an H-adapted exponential map, while

geometrically more clumsy, is most useful in explaining existing definitions
of osculating group structures in the literature. The map Em identifies the
coordinate space R

n with a neighborhood of a point m in the manifold
M , while Fm identifies the same coordinate space with the group THMm.
The typical procedure of analysts is to specify explicit formulas for a group
structure on the coordinate space R

n. But in each case their procedure
is clarified if we identify their formulas as specific instances of our Taylor
coordinates Fm. We will analyze two exemplary cases.

The osculating structures of Folland and Stein. Osculating struc-
tures on contact manifolds first appeared in the work of Folland and Stein
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(see [6], sections 13 and 14). The construction of Folland and stein can be
summarized as follows (we generalize slightly).

On a (2k+1)-dimensional contact manifold, with 2k-dimensional bundle
H ⊆ TM , choose a (local) H-frame X1, . . . ,X2k+1. It can be shown that
this frame can be chosen such that

[Xi,Xk+i] = X2k+1mod H, for i = 1, . . . , p,

[Xi,Xj ] = 0mod H, for all other values of i ≤ j.

Then, for v ∈ R
2k+1, let Em(v) be the endpoint c(1) of the integral curve

c(t) of the vector field
∑
viXi with c(0) = m, in other words,

Em : R
2k+1 →M : v 7→ Φ1∑

viXi
(m),

where Φt
Y denotes the flow generated by a vector field Y . For Folland and

Stein, the ‘osculating Heisenberg structure’ on M is the family of maps Em,
identifying an open subset of the Heisenberg group Hk = R

2k+1 (with its
standard coordinates) with a neighborhood of m ∈M .

In the framework we have established here, we see that the commutator
relations for the H-frame allow us to identify the basis Xi(m) ∈ Hm ⊕Nm

of the osculating Lie algebra with the standard basis of the Lie algebra of
the Heisenberg group. Accordingly, we have a group isomorphism,

Fm : Hk = R
2k+1 → Hm ⊕Nm → THMm

v 7→
∑

viXi(m) 7→ exp(
∑

viXi(m))

We recognize Fm as the Taylor coordinates on THMm for the H-coordinates
Em at m. We see that the osculating structure on M , as defined by Folland
and Stein, can be interpreted as the H-adapted exponential map expm =
Em ◦ F−1

m .
Alternatively, we can conceptualize the construction of Folland and Stein

as specifying an H-adapted exponential map by means of a (locally defined)
flat G-connection ∇ on TM . The connection ∇ is the one for which the
H-frame X1, . . . ,Xn is parallel.

The Heisenberg manifolds of Beals and Greiner. Our second ex-
ample is the group structure defined by Beals and Greiner on the coordi-
nate space for given H-coordinates Em : Rn → U at a point m (see [1],
section 1.1). Beals and Greiner only consider the case where H ⊂ TM is
an arbitrary distribution of codimension one. Proposition 12 provides an
explicit formula for composition in the osculating group THMm in terms of
the Taylor coordinates Fm : Rn ∼= THMm. This formula, when specialized
to the case k = 1, agrees exactly with the unexplained string of formu-
las (1.8), (1.11), (1.15) in [1]. Those formulas can thus be reinterpreted
quite simply as the coordinate expression of an H-adapted exponential map
expm = Em ◦ F−1

m .
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If we compare these two examples, we see that Beals and Greiner start
their construction with an arbitrary system of H-coordinates Em, and are
therefore required to compensate by a quadratic correction term in the Tay-
lor coordinates Fm. Folland and Stein, on the other hand, choose a very
specific type of coordinates Em that is better suited to the Heisenberg struc-
ture, and as a result obtain Taylor coordinates Fm that are simply the linear
coordinates on Hm ⊕Nm. Both strategies can be used in the case of more
general distributions H ⊆ TM .

5. The Parabolic Tangent Groupoid

In [4] section II.5, Connes introduces the tangent groupoid as part of
a streamlined proof of the Atiyah-Singer index theorem. The convolution
algebra of this groupoid encodes the quantization of symbols (as functions
on T ∗M) to classical pseudodifferential operators. The smoothness of the
tangent groupoid proves, in an elegant geometric way, that the principal
symbol of a classical pseudodifferential operator is invariantly defined as a
distribution on TM (or, equivalently, its Fourier transform on T ∗M).

In this section we discuss the definition of a tangent groupoid that plays
the same role for the Heisenberg calculus. Our notion of parabolic arrows
immediately suggests a topology for this groupoid. But our proof that the
groupoid has a well-defined smooth structure relies most crucially on the
notion of H-adapted exponential maps. The succesful definition of a tangent
groupoid by means of H-adapted maps can be considered as proof that the
principal symbol in the Heisenberg calculus is well-defined. More specifically,
it proves that we can use an arbitrary H-exponential map to pull back
Schwartz kernels from M ×M to THM when we develop the calculus.

5.1. The parabolic tangent groupoid and its topology. As a gener-
alization of Connes’ tangent groupoid, which relates the total space of the
tangent bundle TM to the pair groupoidM×M , we define a similar groupoid
in which the bundle of abelian groups TM is replaced by the fiber bundle
of osculating groups THM . We shall refer to this groupoid as the parabolic
tangent groupoid of a manifold with distribution H ⊆ TM , and denote it by
THM .

As an algebraic groupoid, THM is the disjoint union,

THM = (
⋃

t∈(0,1]

Gt) ∪ (
⋃

m∈M

Gm),

of a parametrized family of pair groupoids with the collection of osculating
groups,

Gt =M ×M, t ∈ (0, 1],

Gm = THMm, m ∈M.

Clearly, the union ∪Gt = M × M × (0, 1] by itself is a smooth groupoid,
and the same is true, as we have seen, for the bundle of osculating groups
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∪Gm = THM . We write G0 = THM , and G(0,1] = M ×M × (0, 1]. Each
groupoid Gt, t ∈ [0, 1] has object space M , and the object space for the total
groupoid G = THM is the manifold,

G(0) =M × [0, 1].

We will endow THM with the structure of a manifold with boundary, by
glueing G0 as the t = 0 boundary to G(0,1]. The topology on THM is such
that G(0,1] is an open subset of THM . The topology on THM can be defined
very nicely by means of our parabolic arrows. The construction in [4, II.5]
generalizes immediately if we replace tangent vectors by parabolic arrows.

Definition 20. A curve (a(t), b(t), t) in G(0,1] =M ×M × (0, 1] converges,
as t→ 0, to a parabolic arrow (m, v) ∈ THM if,

M ∋ m = lim
t→0

a(t) = lim
t→0

b(t),

THMm ∋ v = [a]H ∗ [b]−1
H ,

where we assume that a′(0) ∈ H and b′(0) ∈ H.

Recall that [a]H and [b]H denote the parabolic arrows defined by the
curves a, b, while the expression [a]H ∗ [b]−1

H denotes the product of [a]H
with the inverse of [b]H in the osculating group THMm. If H = TM , the
osculating groups are abelian, and the definition simplifies to

TmM ∋ v = a′(0) − b′(0) = lim
t→0

a(t)− b(t)

t
.

This is precisely the topology of the tangent groupoid as defined by Connes
in [4].

It is easy to see that the groupoid operations for THM are continuous.
For example, in G(0,1] we have,

(a(t), b(t), t) · (b(t), c(t), t) = (a(t), c(t), t),

while in G0,

([a]H ∗ [b]−1
H ) ∗ ([b]H ∗ [c]−1

H ) = [a]H ∗ [c]−1
H ,

assuming that a(0) = b(0) = c(0) and a′(0), b′(0), c′(0) ∈ Hm. However, we
will not rigorously develop this point of view. Instead, we glue G0 to G(0,1] in
an alternative way, more convenient for practical use, by defining a smooth
structure on THM .

5.2. Charts on the parabolic tangent groupoid. We now define charts
on the groupoid THM by means of exponential maps, completely analogous
to the construction in [4, II.5].

Suppose we have an H-adapted exponential map,

exp : THM →M.

We define a map,

ψ : THM × [0, 1) → THM,
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by,

ψ(m, v, t) = (expm(δtv),m, t), for t > 0,

ψ(m, v, 0) = (m, v) ∈ THMm.

Here δt denotes the Heisenberg dilation in the osculating group THMm. The
smooth structure on THM × [0, 1) induces a smooth structure in an open
neigborhood of G0 = THM in THM .

At first sight it may seem that the main modification to the construction
of the classical tangent groupoid is the introduction of the parabolic dilations
δtv to replace the simple ‘blow-up’ tv of Connes. This simple idea is indeed
the obvious thing to do if one wants to define a tangent groupoid for the
Heisenberg calculus. But the real crux of the definition of the parabolic
tangent groupoid is the requirement that the exponential map must be H-
adapted. If one uses arbitrary exponential maps to define the charts on
THM , in combination with the parabolic dilations δt, then the resulting
charts are not smoothly compatible (i.e., transition functions would not be
smooth). It is precisely for this reason that arbitrary exponential maps
cannot be used to define Heisenberg pseudodifferential operators.

To better understand the glueing of the bundle THM to M ×M× (0, 1] it
may be helpful to recall the construction of an H-adapted exponential map
by means of a system of H-coordinates (in an open set U ⊆M),

Em : R
n → U.

Recall that H-coordinates are such that, for each m ∈ U , the coordinate
vectors dEm(∂/∂xi), for i = 1, . . . , p, are vectors in Hm. As before, let

Fm : R
p+q → THMm

denote the Taylor coordinates on the osculating group THMm, induced by
the H-coordinates Em (Definition 4). As was discussed, the composition
expm(v) = Em ◦ F−1

m is a (local) H-adapted exponential map. From this
perspective, equivalent to the chart ψ that was defined above we could work
with the chart,

ψ′ : U × R
p × R

q × [0, 1) → THM,

defined by,

ψ′(m,h, n, t) = (Em(th, t2n),m, t), for t > 0,

ψ′(m,h, n, 0) = Fm(m,h, n) ∈ THMm.

This description brings out very clearly what is going on. The expression
(Em(th, t2n),m, t) for t > 0 corresponds to a ‘blow up’ of the diagonal in
M ×M by a factor t−1 in the direction of H, and by a factor t−2 in the
direction transversal to H. This is precisely what one would expect.

But the success of the construction crucially depends on the choice of
coordinates at t = 0, involving the Taylor coordinates Fm. And this is the
subtle ingredient in the construction of the groupoid. Recall that, if we make
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the canonical identification of THM with the bundle H ⊕ N (by means of
the Lie exponential map in the fibers), then the Taylor coordinates Fm are
explicitly given by,

log Fm(m,h, n) = (h, n − 1
2bm(h, h)) ∈ Hm ⊕Nm,

where bm(h, h) is a quadratic form that depends on the coordinates Em

(see Propositions 12 and 24). The necessity and nature of this quadratic
correction term bm(h, h) would be very hard to guess if one had to construct
the parabolic tangent groupoid from scratch.

If the coordinates Em are chosen in such a way that the corresponding
bilinear form bm is skew-symmetric (for example, as in the construction
of Folland and Stein), then this quadratic correction term vanishes, and
we can work simply with the natural coordinates on Hm ⊕ Nm at t = 0.
Correspondingly, an alternative solution to the construction of the parabolic
tangent groupoid would be to work with ‘preferred’ coordinate systems Em,
i.e., H-coordinates for which bm is skew-symmetric.

5.3. Proof that the smooth structure is well-defined. We now show
that, with the above choices, the manifold structure on THM is well defined.
The proofs of Propositions 22 and 23 show the relevance of the corrected
groupoid coordinates at t = 0, if arbitrary H-coordinates Em are allowed.
The basic ingredient of the proof is the following technical lemma.

Lemma 21. Let φ : THM → THM be a diffeomorphism that preserves the
fibers; fixes the zero section M ⊂ THM ; and at the point m has derivative
Dφm = id, and a second derivative that satisfies D2φm(h, h) ∈ Hm, for
h ∈ Hm. Then the map,

φ̃ : THM × R → THM ×R,

defined by,

φ̃(m, v, t) = (δ−1
t φ(m, δtv), t),

φ̃(m, v, 0) = (m, v, 0),

is a diffeomorphism.

Proof. Clearly, φ̃ is smooth on the open subset where t 6= 0. We must prove

that φ̃ is smooth in a neighborhood of the t = 0 fiber.
For convenience of notation, we identify THM with H ⊕N via the loga-

rithm. The proof is based on a simple Taylor expansion near t = 0. For a
choice of coordinates on H ⊕N we have,

φ(m, v) = φ(m, 0) +Dφm(v) +
1

2
D2φm(v, v) +R(m, v).
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The remainder term R = R(m, v) satisfies a bound |R| < C|v|3, for |v| < 1.
Now write v = h+ n with h ∈ Hm, n ∈ Nm. Then,

φ(m, th + t2n)

= φ(m, 0) + tDφm(h) + t2Dφm(n)

+
1

2
t2D2φm(h, h) + t3D2φm(h, n) +

1

2
t4D2φm(n, n) +R(m, th+ t2n)

= φ(m, 0) + tDφm(h) + t2Dφm(n) +
1

2
t2D2φm(h, h) + t3R′.

The error term R′ = r′(m,h, n, t), satisfies a bound |R′| ≤ C for |h| < ǫ|t|−1,
|n| < ǫ|t|−2. Observe that these inequalities hold in an open neighborhood
of the t = 0 fiber in THM × R.

The assumptions on φ allow the simplification,

φ(m, δtv) = (m, th+ t2n+
1

2
t2D2φm(h, h) + t3R′),

where D2φm(h, h) ∈ Hm. We find,

δ−1
t φ(m, δtv) = (m, v + tR′′),

where, again, the coefficient of the remainder R′′ is uniformly bounded in a

neighborhood of the t = 0 fiber. This implies continuity of φ̃.
By the same reasoning, expanding φ in a higher order Taylor series, one

obtains,

φ̃(m, v, t) = (m, v +

r∑

k=1

akt
k +Rrt

r, t),

where the coefficients ak = ak(m, v) are smooth functions, independent of t,
arising from the derivatives of φ, while the coefficient Rr of the remainder
is uniformly bounded in a neighborhood of t = 0. This implies smoothness

of φ̃.
�

Proposition 22. For different choices of H-adapted exponential maps the
charts ψ : THM×[0, 1] → THM , defined above, have smooth transition func-
tions. In other words, THM has a well-defined structure of smooth manifold,
independent of the choice of H-adapted exponential map.

Proof. Let ψ and ψ′ be the two maps,

ψ,ψ′ : THM × [0, 1] → THM,

constructed in the manner explained above, for two different exponential
maps E,E′ : THM → M . We must prove that the transition function

φ̃ = ψ−1 ◦ ψ′ is smooth. We have,

φ̃(m, v, t) = (δ−1
t E−1

m (E′
m(δtv)),m, t), for t 6= 0,

φ̃(m, v, 0) = (m, v, 0).
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Definition 19 of H-adapted exponential maps immediately implies that the
composition φm = E−1

m ◦E′
m satisfies the assumptions of Lemma 21. Hence,

φ̃ is smooth.
�

5.4. Compatibility of smooth structure and topology. The next propo-
sition shows that the manifold structure on THM is compatible with the
topology according to Definition 20.

Proposition 23. Suppose a(t), b(t) are smooth curves in M with a(0) =
b(0) = m, such that a′(0) and b′(0) are in Hm. Then in THM , endowed
with the manifold structure defined above,

lim
t→0

(a(t), b(t), t) = [a]H ∗ [b]−1
H ∈ THMm.

First proof. If we assume that the curve (a(t), b(t), t) in G(0,1] extends
to a smooth curve in THM , then there is a nice proof that makes use
of parabolic flows. Let v0 ∈ THMm be the point in G0 to which the
curve in G(0,1] converges, and let vt be the parabolic arrow defined by,
ψ(b(t), vt, t) = (a(t), b(t), t), i.e.,

a(t) = expb(t)(δtvt).

By definition of the manifold structure on THM , we have (b(t), vt) →
(m, v0). We see that the section vt, t ∈ [0, 1] is smooth along b(t), and
can be extended to a section V in a neigborhood of m = b(0). Now define a
flow,

Φt
v(m

′) = expm′(δtV (m′)).

By definition of Heisenberg exponential maps, the curve,

t 7→ expm′(δtV (m′))

has parabolic arrow V (m′). In other words, Φt
v is a parabolic flow, and in

particular,

[Φt
v(m)]H = V (m) = v0 ∈ THMm.

Clearly a(t) = Φt
v(b(t)). Extend b(t) to a parabolic flow Φt

b, such that
b(t) = Φt

b(m). Then we see that,

[a]H = [Φt
v ◦ Φt

b(m)]H = [Φt
v(m)]H ∗ [Φt

b(m)]H = v0 ∗ [b]H ,
which means that v0 = [a]H ∗ [b]−1

H .
2

Second proof. To prove the proposition without the extra assumption of
convergence, and to illustrate a different technique, we give a second proof.

We use the map ψ′ defined above to describe the manifold structure on
THM . We need a system of H-coordinates Em, and the corresponding
Taylor coordinates Fm. Let us identify an open set U ⊆ M with R

n (via a
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coordinate map that we suppress in the notation). Given an H-frame Xi on
U , we have a system of coordinates,

Em : R
n → U : v 7→ m+

∑
viXi(m) = m+Xv.

HereX = (Xj
i ) denotes the n×nmatrix whose columns are the vector-values

functions Xi : U → R
n.

Expand a and b in the coordinates on U ∼= R
n as,

a(t) = th+ t2k +O(t3),

b(t) = th′ + t2k′ +O(t3),

assuming that a(0) = b(0) = 0. We have Taylor coordinates,

Fm(h, n) = [a]H , Fm(h′, n′) = [b]H ,

where n = kN , n′ = k′N are the normal components of k, k′. With the
notation of Proposition 12, we compute,

F−1
m ([a]H ∗ [b]−1

H ) = (h, n) ∗ (h′, n′)−1

= (h, n) ∗ (−h′,−n′ + b(h′, h′))

= (h− h′, n− n′ − b(h, h′) + b(h′, h′)).

Now let (a(t), b(t), t) = ψ′(b(t), x(t), y(t), t), i.e.,

a(t) = Eb(t)(tx(t), t
2y(t)),

where the coordinates (x(t), y(t)) ∈ R
p+q depend on t. We must show that,

lim
t→0

(x(t), y(t)) = (−h+ h′,−n+ n′ − b(h, h′) + b(h, h)).

We approximate the coordinates (x(t), y(t)) ∈ R
p+q by a Taylor expansion

of E−1
b(t)(a(t)), using the explicit form of Em, as follows,

(tx(t), t2y(t)) = X−1
b(t) (a(t)− b(t))

= a(t)− b(t) + tD(X−1)0
(
h′, a(t)− b(t)

)
+O(t3)

= t(h− h′) + t2(k − k′) + t2D(X−1)0(h
′, h− h′) +O(t3)

Let us explain the calculation. In the first step we expanded X−1(b(t)).
Because a(t)− b(t) = O(t), it sufficed to consider only the first derivative,

∂

∂t
X−1(b(t))

∣∣
t=0

= D(X−1)0.h
′.

In the second step we expanded a(t) − b(t), again ignoring terms of order
O(t3).

Reversing the dilation, we find,

(x(t), y(t)) =
(
h− h′, n − n′ +D(X−1)N0 (h′, h− h′)

)
+O(t).

Because X0 = 1, we have D(X−1)0 = −DX0, while the normal component
DXN

0 (h′, h − h′) is equal to b(h′, h − h′), by definition of the bilinear form
b. This gives the desired result.
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2

Appendix: Two-step nilpotent groups.

We collect here some simple facts about two-step nilpotent groups that
play a role in this paper. These facts are elementary, but we are not aware
of a reference that contains the formulas we need.

Recall that a Lie algebra g is called two-step nilpotent if [[g, g], g] = 0.
The Campbell–Baker–Hausdorff formula for such Lie algebras has very few
non-zero terms:

exp (x) · exp (y) = exp (x+ y +
1

2
[x, y]),

for x, y ∈ g. Replacing the bracket [x, y] with an arbitrary (not necessarily
skew-symmetric) bilinear map B : R

p × R
p → R

q, we can generalize and
define a Lie group GB = R

p × R
q with group operation

(h1, n1) ∗ (h2, n2) = (h1 + h2, n1 + n2 +B(h1, h2)).

It is trivial to verify the group axioms (using the bilinearity of B). By
Proposition 12, the group structure of parabolic arrows THMm expressed in
Taylor coordinates is of this type. Our main goal in this section is to prove
the following proposition.

Proposition 24. Let GB be the Lie group defined above. With the natural
coordinates on GB = R

p+q and LieGB = T0R
p+q, the exponential map

exp : LieGB → GB is expressed as

exp(h, n) = (h, n+
1

2
B(h, h)).

The proof consists of a string of lemmas.

Lemma 25. The Lie algebra structure on LieGB = R
p+q is given by the

bracket

[(h1, n1), (h2, n2)] = (0, B(h1, h2)−B(h2, h1)) .

In particular, the Lie algebra structure only depends on the skew-symmetric
part (B −BT )/2 of the bilinear map B.

Proof. The neutral element in GB is (0, 0), and inverses are given by

(h, n)−1 = (−h,−n+B(h, h)).

Commutators in GB are calculated as follows:

(h1, n1) ∗ (h2, n2) ∗ (h1, n1)−1 ∗ (h2, n2)−1

= (h1, n1) ∗ (h2, n2) ∗ (−h1,−n1 +B(h1, h1)) ∗ (−h2,−n2 +B(h2, h2))

= (h1 + h2, n1 + n2 +B(h1, h2))∗
(−h1 − h2,−n1 − n2 +B(h1, h1) +B(h2, h2) +B(−h1,−h2))

= (0, B(h1, h1) +B(h2, h2) + 2B(h1, h2) +B(h1 + h2,−h1 − h2))

= (0, B(h1, h2)−B(h2, h1)).
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Replace (hi, ni) with (thi, tni) and take the limit as t → 0.
�

We see that the groups GB are indeed two-step nilpotent, or even abelian
in the trivial case where B is symmetric.

Lemma 26. If B : Rp × R
p → R

q is a skew-symmetric bilinear map, then
the exponential map exp: Lie (GB) → GB is the usual identification of T0R

n

with R
n.

Proof. For any (h, n) ∈ R
p+q we have (th, tn)∗(sh, sn) = ((t+s)h, (t+s)n).

In other words, the map

φ : R → Gb : t 7→ (th, tn)

is a group homomorphism. The tangent vector to this one-parameter sub-
group at t = 0 is φ′(0) = (h, n) ∈ Lie (GB), and by definition exp(φ′(0)) =
φ(1) = (h, n) ∈ GB .

�

Lemma 27. If B,C : Rp × R
p → R

q are two bilinear maps that have the
same skew-symmetric part, then the quadratic map

φ : GC

∼=−→ GB : (h, n) 7→ (h, n + 1
2B(h, h) − 1

2C(h, h)),

is a group isomorphism.

Proof. With S = B − C:

φ(h1, n1) ∗ φ(h2, n2)
= (h1, n1 +

1
2S(h1, h1)) ∗ (h2, n2 + 1

2S(h2, h2))

= (h1 + h2, n1 +
1
2S(h1, h1) + n2 +

1
2S(h2, h2) + C(h1, h2))

= (h1 + h2, n1 + n2 +
1
2S(h1, h1) +

1
2S(h2, h2) + S(h1, h2) +B(h1, h2))

= (h1 + h2, n1 + n2 +
1
2S(h1 + h2, h1 + h2) +B(h1, h2))

= φ(h1 + h2, n1 + n2 +B(h1, h2)) = φ((h1, n1) ∗ (h2, n2)).

�

Proof of Proposition 24. Let C = 1
2 (B − BT ) be the skew-symmetric part

of B. The exponential map for GB is the composite of the following three
maps:

Lie(GB)
∼=−→ Lie(GC)

exp−→ GC
φ−→ GB .

The first two of these maps are just the identity map R
p+q → R

p+q (by
Lemmas 25 and 26, respectively). Lemma 27 gives the explicit isomorphism
φ : GC

∼= GB , with C(h, h) = 0.
�
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